Нормированные пространства (3 курс) — различия между версиями
Sementry (обсуждение | вклад) (что-то исправил) |
|||
Строка 53: | Строка 53: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Нормы <tex>\| \|_1</tex>, <tex>\| \|_2</tex> '''эквивалентны''', если | + | Нормы <tex>\|\cdot \|_1</tex>, <tex>\|\cdot \|_2</tex> '''эквивалентны''', если сходимость в них равносильна: <tex>\forall \{x_n\}: x_n \xrightarrow[]{\|\|_1} x \Leftrightarrow x_n \xrightarrow[]{\|\|_2} x</tex>. |
}} | }} | ||
+ | Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть, выполняются рефлексивность, симметричность и транзитивность). | ||
− | Это | + | {{Утверждение |
+ | |statement= | ||
+ | Нормы <tex>\|\cdot \|_1</tex>, <tex>\|\cdot \|_2</tex> эквивалентны <tex> \Longleftrightarrow </tex> существуют константы <tex>m, M > 0</tex> такие, что <tex>\forall x: m\|x\|_2 \le \|x\|_1 \le M \|x\|_2</tex>. | ||
+ | |proof= | ||
+ | {{TODO|t=Это было "очевидно". Доказал: --[[Участник:Sementry|Мейнстер Д.]] 22:46, 13 января 2013 (GST). Проверьте и, если все хорошо, уберите данную плашку.}} | ||
+ | |||
+ | Несложно показать, что из взаимной ограниченности норм следует равносходимость: | ||
+ | |||
+ | <tex> x_n \xrightarrow[]{\|\|_1} x \Rightarrow \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_1 < \varepsilon \Rightarrow </tex> <tex> \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_2 < \frac \varepsilon m \Rightarrow x_n \xrightarrow[]{\|\|_2} x</tex>; | ||
+ | |||
+ | <tex> x_n \xrightarrow[]{\|\|_2} x \Rightarrow \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_2 < \varepsilon \Rightarrow </tex> <tex> \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_1 < M \varepsilon \Rightarrow x_n \xrightarrow[]{\|\|_1} x</tex>. | ||
+ | |||
+ | Теперь убедимся, что без взаимной ограниченности равносходимости также не будет: | ||
+ | |||
+ | Так как ее нет, то не существует, например, необходимой константы <tex> M </tex>. Значит, существует последовательность <tex> \forall x_n: \|x\|_1 \ge n \|x\|_2 </tex>. | ||
+ | |||
+ | Рассмотрим тогда последовательность <tex> \frac {x_n}{\|x_n\|_1} </tex>. | ||
+ | |||
+ | В норме <tex> \|\cdot\|_2 </tex> она будет сходиться к нулю: <tex> \| \frac {x_n}{\|x_n\|_1} \|_2 \le \|\frac {x_n}{n\|x_n\|_2}\| = \frac1n \frac{\|x_n\|_2}{\|x_n\|_2} = \frac1n \xrightarrow[n \to \infty]{} 0 </tex>. | ||
+ | |||
+ | Но в <tex> \|\cdot\|_1 </tex> каждый элемент имеет норму <tex> \| \frac {x_n}{\|x_n\|_1} \|_1 = \frac {\|x_n\|_1}{\|x_n\|_1} = 1 \ne \|0\|_1</tex>, то есть, последовательность <tex> x_n </tex> к нулю в этой норме не сходится, что и требовалось доказать. | ||
+ | }} | ||
{{Определение | {{Определение | ||
Строка 111: | Строка 133: | ||
Так как <tex>\|y_m - y^*\| \to 0</tex> и <tex>y = \sum\limits_{k=1}^{n} \alpha_k^* e_k \in Y</tex>, то <tex>y \in Y</tex> и <tex>Y = \mathrm{Cl} Y</tex>.}} | Так как <tex>\|y_m - y^*\| \to 0</tex> и <tex>y = \sum\limits_{k=1}^{n} \alpha_k^* e_k \in Y</tex>, то <tex>y \in Y</tex> и <tex>Y = \mathrm{Cl} Y</tex>.}} | ||
− | Пример: <tex> X = C[0; 1]</tex>, <tex>Y</tex> — пространство всех полиномов степени не выше <tex> n </tex>. Очевидно, <tex> Y </tex> конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из <tex> Y </tex>, то ее пределом будет также полином из <tex> Y </tex>. Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в <tex>Y</tex> не ограничивать, то замыканием <tex>Y</tex> будет все пространство <tex>X</tex>, по [[Приближение_непрерывной_функции_полиномами_на_отрезке | теореме Вейерштрасса]] любую непрерывную на отрезке функцию можно приблизить полиномами. | + | Пример: <tex> X = C[0; 1]</tex>, <tex>Y</tex> — пространство всех полиномов степени не выше <tex> n </tex>. Очевидно, <tex> Y </tex> конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из <tex> Y </tex>, то ее пределом будет также полином из <tex> Y </tex>. Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в <tex>Y</tex> не ограничивать, то замыканием <tex>Y</tex> будет все пространство <tex>X</tex>, по [[Приближение_непрерывной_функции_полиномами_на_отрезке | теореме Вейерштрасса]], любую непрерывную на отрезке функцию можно приблизить полиномами. |
== Ссылки == | == Ссылки == |
Версия 21:46, 13 января 2013
Определение: |
Линейное (векторное) пространство над полем
| — это множество с заданными на нем операциями сложениями и умножения на скаляр такими, что:
Определение: |
Функция
| называется нормой в пространстве , если для нее выполняется:
Заметим, что любое нормированное пространство можно превратить в метрическое, задав метрику как . Заметим, что обратное неверно: например, хоть c и можно наделить линейной структурой, не существует нормы, аналогичной по сходимости с этой метрикой.
Утверждение: |
В нормированных пространствах линейные операции непрерывны. |
Пусть .Тогда , так как . , так как . |
Примеры НП:
- — пространство непрерывных на функций,
- — пространство функций, интегрируемых на множестве с степенью , . В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы.
- — пространство числовых последовательностей, суммируемых с -й степенью, норму можно ввести как
Определение: |
Нормированное пространство | называется B-пространством (Банаховым), если для любой последовательности элементов , для которых из при вытекает существование предела последовательности.
Определение: |
Нормы | , эквивалентны, если сходимость в них равносильна: .
Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть, выполняются рефлексивность, симметричность и транзитивность).
Утверждение: |
Нормы , эквивалентны существуют константы такие, что . |
TODO: Это было "очевидно". Доказал: --Мейнстер Д. 22:46, 13 января 2013 (GST). Проверьте и, если все хорошо, уберите данную плашку. Несложно показать, что из взаимной ограниченности норм следует равносходимость: ; . Теперь убедимся, что без взаимной ограниченности равносходимости также не будет: Так как ее нет, то не существует, например, необходимой константы . Значит, существует последовательность .Рассмотрим тогда последовательность .В норме Но в она будет сходиться к нулю: . каждый элемент имеет норму , то есть, последовательность к нулю в этой норме не сходится, что и требовалось доказать. |
Определение: |
Пространство | конечномерно, если .
Теорема (Рисс): |
В конечномерных пространствах любые две нормы эквивалентны. |
Доказательство: |
Докажем, что произвольная норма в конечномерном пространстве эквивалентна , то есть выберем , далее по отношению эквивалентности получим эквивалентность произвольной норме.Выберем и зафиксируем в пространстве произвольный базис .1. неравенству Коши для сумм) . Заметим, что является нормой в координатной записи, а является константным значением для фиксированного базиса. , (поТаким образом, получили .2. Теперь надо доказать, что Рассмотрим единичный шар по норме тут есть подсказка). Рассмотрим на нем функцию , . Покажем, что она непрерывна: , то есть при стремлении к , расстояние между и также стремится к нулю, что означает непрерывность. : , является компактом в (TODO: почему? может,Так как теореме Вейерштрасса она принимает минимум на этом компакте, равный (пусть он достигается в точке ). Также не может быть нулем на : пусть для какого-то это так, тогда тогда , что означает, что , то есть . непрерывна на , то поТеперь рассмотрим произвольный ненулевой Таким образом, получили обе части двойного неравенства. , тогда точка также принадлежит по линейности пространства, и в частности, принадлежит . Рассмотрим : , то есть . |
Определение: |
Подпространство в алгебраическом смысле не обязательно замкнуто в исходном пространстве. Поэтому в функциональном анализе собственно подпространством называется именно замкнутое подпространство, а алгебраические подпространства называют линейными подмножествами. |
Теорема: |
Пусть — НП и — линейное конечномерное подмножество в , тогда — замкнуто в , т.е.
. |
Доказательство: |
Пусть для произвольного , --- исходная норма., пусть . По теореме Рисса, нормы и в эквивалентны; в , очевидно, есть покоординатная сходимость.Возьмем еще одну последовательность , .Вследствие покоординатной сходимости, .По полноте вещественной оси, все Так как последовательностей сходятся: . и , то и . |
Пример: теореме Вейерштрасса, любую непрерывную на отрезке функцию можно приблизить полиномами.
, — пространство всех полиномов степени не выше . Очевидно, конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из , то ее пределом будет также полином из . Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в не ограничивать, то замыканием будет все пространство , по