Нормированные пространства (3 курс) — различия между версиями
Строка 100: | Строка 100: | ||
2. Теперь надо доказать, что <tex>\exists m \forall x: m \|x\|_2 \le \|x\|</tex> | 2. Теперь надо доказать, что <tex>\exists m \forall x: m \|x\|_2 \le \|x\|</tex> | ||
− | Рассмотрим единичный шар по норме <tex>\| \|_2</tex>: <tex>S_2 = \{ \overline \alpha \mid \| \overline \alpha \|_2 = 1 \}</tex>, <tex>S_2</tex> является компактом в <tex>\mathbb{R}^n</tex>: {{TODO|t=если кому-то не лень, может потренироваться и расписать поформальнее}} | + | Рассмотрим единичный шар по норме <tex>\| \|_2</tex>: <tex>S_2 = \{ \overline \alpha \mid \| \overline \alpha \|_2 = 1 \}</tex>, <tex>S_2</tex> является компактом в <tex>\mathbb{R}^n</tex>, воспользуемся [[Теорема_Хаусдорфа_об_ε-сетях | теоремой Хаусдорфа]] и покажем: {{TODO|t=если кому-то не лень, может потренироваться и расписать поформальнее}} |
* замкнутость: возьмем последовательность, пусть она сходится не к элементу единичной сферы, тогда с какого-то члена элементы последовательности тоже окажутся с нормой, не равной 1. | * замкнутость: возьмем последовательность, пусть она сходится не к элементу единичной сферы, тогда с какого-то члена элементы последовательности тоже окажутся с нормой, не равной 1. | ||
* вполне ограниченность: пусть нам дали какой-то <tex>\varepsilon</tex>, заметим что норма <tex>\|\|_2</tex> — самое обычная длина вектора, возьмем и сделаем в параллелепипеде <tex>[0; 1]^n</tex> n-мерную сетку с шагом <tex>\frac{\varepsilon}{\sqrt n}</tex>, которая и будет центрами шаров радиусом эпсилон, тогда любая точка в параллелепипеде точно будет покрыта каким-то шаром | * вполне ограниченность: пусть нам дали какой-то <tex>\varepsilon</tex>, заметим что норма <tex>\|\|_2</tex> — самое обычная длина вектора, возьмем и сделаем в параллелепипеде <tex>[0; 1]^n</tex> n-мерную сетку с шагом <tex>\frac{\varepsilon}{\sqrt n}</tex>, которая и будет центрами шаров радиусом эпсилон, тогда любая точка в параллелепипеде точно будет покрыта каким-то шаром |
Версия 11:01, 14 января 2013
Определение: |
Линейное (векторное) пространство над полем
| — это множество с заданными на нем операциями сложениями и умножения на скаляр такими, что:
Определение: |
Функция
| называется нормой в пространстве , если для нее выполняется:
Заметим, что любое нормированное пространство можно превратить в метрическое, задав метрику как . Заметим, что обратное неверно: например, хоть c и можно наделить линейной структурой, не существует нормы, аналогичной по сходимости с этой метрикой.
Утверждение: |
В нормированных пространствах линейные операции непрерывны. |
Пусть .Тогда , так как . , так как . |
Примеры НП:
- — пространство непрерывных на функций,
- — пространство функций, интегрируемых на множестве с степенью , . В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы.
- — пространство числовых последовательностей, суммируемых с -й степенью, норму можно ввести как
Определение: |
Нормированное пространство | называется B-пространством (Банаховым), если для любой последовательности элементов , для которых из при вытекает существование предела последовательности.
Определение: |
Нормы | , эквивалентны, если сходимость в них равносильна: .
Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть, выполняются рефлексивность, симметричность и транзитивность).
Утверждение: |
Нормы , эквивалентны существуют константы такие, что . |
TODO: Это было "очевидно". Доказал: --Мейнстер Д. 22:46, 13 января 2013 (GST). Проверьте и, если все хорошо, уберите данную плашку. Несложно показать, что из взаимной ограниченности норм следует равносходимость: ; . Теперь убедимся, что без взаимной ограниченности равносходимости также не будет: Так как ее нет, то не существует, например, необходимой константы . Значит, существует последовательность .Рассмотрим тогда последовательность .В норме Но в она будет сходиться к нулю: . каждый элемент имеет норму , то есть, последовательность к нулю в этой норме не сходится, что и требовалось доказать. |
Определение: |
Пространство | конечномерно, если .
Теорема (Рисс): |
В конечномерных пространствах любые две нормы эквивалентны. |
Доказательство: |
Докажем, что произвольная норма в конечномерном пространстве эквивалентна , то есть выберем , далее по отношению эквивалентности получим эквивалентность произвольной норме.Выберем и зафиксируем в пространстве произвольный базис .1. неравенству Коши для сумм) . Заметим, что является нормой в координатной записи, а является константным значением для фиксированного базиса. , (поТаким образом, получили .2. Теперь надо доказать, что Рассмотрим единичный шар по норме теоремой Хаусдорфа и покажем: TODO: если кому-то не лень, может потренироваться и расписать поформальнее : , является компактом в , воспользуемся
Рассмотрим на нем функцию , . Покажем, что она непрерывна.Покажем, что . Раскроем двумя способами модуль.По свойствам нормы, , то есть при стремлении к , расстояние между и также стремится к нулю, что означает непрерывность. Так как теореме Вейерштрасса она принимает минимум на этом компакте, равный (пусть он достигается в точке ). Также не может быть нулем на : пусть для какого-то это так, тогда тогда , что означает, что , то есть . непрерывна на , то поТеперь рассмотрим произвольный ненулевой Таким образом, получили обе части двойного неравенства. , тогда точка также принадлежит по линейности пространства, и в частности, принадлежит . Рассмотрим : , то есть . |
Определение: |
Подпространство в алгебраическом смысле не обязательно замкнуто в исходном пространстве. Поэтому в функциональном анализе собственно подпространством называется именно замкнутое подпространство, а алгебраические подпространства называют линейными подмножествами. |
Теорема: |
Пусть — НП и — линейное конечномерное подмножество в , тогда — замкнуто в , т.е.
. |
Доказательство: |
Пусть для произвольного , --- исходная норма., пусть . По теореме Рисса, нормы и в эквивалентны; в , очевидно, есть покоординатная сходимость.Возьмем еще одну последовательность , .Вследствие покоординатной сходимости, .По полноте вещественной оси, все Так как последовательностей сходятся: . и , то и . |
Пример: теореме Вейерштрасса, любую непрерывную на отрезке функцию можно приблизить полиномами.
, — пространство всех полиномов степени не выше . Очевидно, конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из , то ее пределом будет также полином из . Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в не ограничивать, то замыканием будет все пространство , по