Нормированные пространства (3 курс) — различия между версиями
Rybak (обсуждение | вклад) м |
|||
Строка 21: | Строка 21: | ||
|definition= | |definition= | ||
Функция <tex>\| \cdot \|: L \to \mathbb{R}</tex> называется нормой в пространстве <tex>L</tex>, если для нее выполняется: | Функция <tex>\| \cdot \|: L \to \mathbb{R}</tex> называется нормой в пространстве <tex>L</tex>, если для нее выполняется: | ||
− | # <tex>\forall x \in L: \| x \| \ge 0</tex>, <tex>\| x \| = 0 \ | + | # <tex>\forall x \in L: \| x \| \ge 0</tex>, <tex>\| x \| = 0 \iff x = \mathrm{0}</tex> |
# <tex>\forall \alpha \in \mathbb{R}\ \forall x \in L: \| \alpha x \| = |\alpha |\| x \|</tex> | # <tex>\forall \alpha \in \mathbb{R}\ \forall x \in L: \| \alpha x \| = |\alpha |\| x \|</tex> | ||
# <tex>\forall x, y \in L: \| x + y \| \le \| x \| + \| y \|</tex> | # <tex>\forall x, y \in L: \| x + y \| \le \| x \| + \| y \|</tex> | ||
Строка 53: | Строка 53: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Нормы <tex>\|\cdot \|_1</tex>, <tex>\|\cdot \|_2</tex> '''эквивалентны''', если сходимость в них равносильна: <tex>\forall \{x_n\}: x_n \xrightarrow[]{\|\|_1} x \ | + | Нормы <tex>\|\cdot \|_1</tex>, <tex>\|\cdot \|_2</tex> '''эквивалентны''', если сходимость в них равносильна: <tex>\forall \{x_n\}: x_n \xrightarrow[]{\|\|_1} x \iff x_n \xrightarrow[]{\|\|_2} x</tex>. |
}} | }} | ||
Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть, выполняются рефлексивность, симметричность и транзитивность). | Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть, выполняются рефлексивность, симметричность и транзитивность). | ||
Строка 59: | Строка 59: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
− | Нормы <tex>\|\cdot \|_1</tex>, <tex>\|\cdot \|_2</tex> эквивалентны <tex> \ | + | Нормы <tex>\|\cdot \|_1</tex>, <tex>\|\cdot \|_2</tex> эквивалентны <tex> \iff </tex> существуют константы <tex>m, M > 0</tex> такие, что <tex>\forall x: m\|x\|_2 \le \|x\|_1 \le M \|x\|_2</tex>. |
|proof= | |proof= | ||
{{TODO|t=Это было "очевидно". Доказал: --[[Участник:Sementry|Мейнстер Д.]] 22:46, 13 января 2013 (GST). Проверьте и, если все хорошо, уберите данную плашку.}} | {{TODO|t=Это было "очевидно". Доказал: --[[Участник:Sementry|Мейнстер Д.]] 22:46, 13 января 2013 (GST). Проверьте и, если все хорошо, уберите данную плашку.}} | ||
Строка 65: | Строка 65: | ||
Несложно показать, что из взаимной ограниченности норм следует равносходимость: | Несложно показать, что из взаимной ограниченности норм следует равносходимость: | ||
− | <tex> x_n \xrightarrow[]{\|\|_1} x \ | + | <tex> x_n \xrightarrow[]{\|\|_1} x \implies \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_1 < \varepsilon \implies </tex> <tex> \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_2 < \frac \varepsilon m \implies x_n \xrightarrow[]{\|\|_2} x</tex>; |
− | <tex> x_n \xrightarrow[]{\|\|_2} x \ | + | <tex> x_n \xrightarrow[]{\|\|_2} x \implies \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_2 < \varepsilon \implies </tex> <tex> \forall \varepsilon\ \exists N: \forall n > N: \|x_n - x\|_1 < M \varepsilon \implies x_n \xrightarrow[]{\|\|_1} x</tex>. |
Теперь убедимся, что без взаимной ограниченности равносходимости также не будет: | Теперь убедимся, что без взаимной ограниченности равносходимости также не будет: | ||
Строка 107: | Строка 107: | ||
Покажем, что <tex>|f(\alpha_1 + \Delta \alpha_1 \dots \alpha_n + \Delta \alpha_n) - f(\alpha_1 \dots \alpha_n)| \le \sum |\Delta \alpha_k | \| e_k \|</tex>. Раскроем двумя способами модуль. | Покажем, что <tex>|f(\alpha_1 + \Delta \alpha_1 \dots \alpha_n + \Delta \alpha_n) - f(\alpha_1 \dots \alpha_n)| \le \sum |\Delta \alpha_k | \| e_k \|</tex>. Раскроем двумя способами модуль. | ||
− | * <tex> \|\alpha+\Delta\alpha\|-\|\alpha\|\ge0 </tex> <tex>\ | + | * <tex> \|\alpha+\Delta\alpha\|-\|\alpha\|\ge0 </tex> <tex>\implies </tex> <tex>\|\alpha+\Delta\alpha\|-\|\alpha\|\le\|\alpha\| + \|\Delta\alpha\|-\|\alpha\| = \|\Delta\alpha\|</tex> |
− | * <tex> \|\alpha+\Delta\alpha\|-\|\alpha\|<0 </tex> <tex>\ | + | * <tex> \|\alpha+\Delta\alpha\|-\|\alpha\|<0 </tex> <tex>\implies </tex> <tex>\|\alpha\|-\|\alpha+\Delta\alpha\|</tex><tex>= \|\alpha+\Delta\alpha-\Delta\alpha\| - \|\alpha+\Delta\alpha\|</tex><tex>\le \|\alpha+\Delta\alpha\| + \|\Delta\alpha\| - \|\alpha+\Delta\alpha\|</tex><tex> = \|\Delta\alpha\|</tex> |
По свойствам нормы, <tex>\|\Delta\alpha\| = \|\sum \Delta\alpha_k e_k\| \le \sum \|\Delta\alpha_ke_k\| = \sum |\Delta\alpha_k| \|e_k\|</tex> | По свойствам нормы, <tex>\|\Delta\alpha\| = \|\sum \Delta\alpha_k e_k\| \le \sum \|\Delta\alpha_ke_k\| = \sum |\Delta\alpha_k| \|e_k\|</tex> | ||
Строка 114: | Строка 114: | ||
<tex>|f(\alpha_1 + \Delta \alpha_1 \dots \alpha_n + \Delta \alpha_n) - f(\alpha_1 \dots \alpha_n)| \le \sum |\Delta \alpha_k | \| e_k \| \le M \sqrt{\sum (\Delta \alpha_k )^2}</tex>, то есть при стремлении <tex>\Delta \alpha_k </tex> к <tex>0</tex>, расстояние между <tex>f(\overline \alpha)</tex> и <tex>f(\overline \alpha + \Delta \overline \alpha)</tex> также стремится к нулю, что означает непрерывность. | <tex>|f(\alpha_1 + \Delta \alpha_1 \dots \alpha_n + \Delta \alpha_n) - f(\alpha_1 \dots \alpha_n)| \le \sum |\Delta \alpha_k | \| e_k \| \le M \sqrt{\sum (\Delta \alpha_k )^2}</tex>, то есть при стремлении <tex>\Delta \alpha_k </tex> к <tex>0</tex>, расстояние между <tex>f(\overline \alpha)</tex> и <tex>f(\overline \alpha + \Delta \overline \alpha)</tex> также стремится к нулю, что означает непрерывность. | ||
− | Так как <tex>f</tex> непрерывна на <tex>S_2</tex>, то по [[Предел_отображения_в_метрическом_пространстве#Равномерно непрерывные отображения|теореме Вейерштрасса]] она принимает минимум на этом компакте, равный <tex>m</tex> (пусть он достигается в точке <tex>\overline \alpha^*</tex>). Также <tex>f</tex> не может быть нулем на <tex>S_2</tex>: пусть для какого-то <tex>x \in S_2</tex> это так, тогда тогда <tex>\|x\| = 0 \ | + | Так как <tex>f</tex> непрерывна на <tex>S_2</tex>, то по [[Предел_отображения_в_метрическом_пространстве#Равномерно непрерывные отображения|теореме Вейерштрасса]] она принимает минимум на этом компакте, равный <tex>m</tex> (пусть он достигается в точке <tex>\overline \alpha^*</tex>). Также <tex>f</tex> не может быть нулем на <tex>S_2</tex>: пусть для какого-то <tex>x \in S_2</tex> это так, тогда тогда <tex>\|x\| = 0 \implies \| \sum \alpha_k e_k \| = 0 \implies \alpha_k e_k = 0 \implies \forall k: \alpha_k = 0 \implies \|x\|_2 = 0</tex>, что означает, что <tex>x \notin S_2</tex>, то есть <tex>m > 0</tex>. |
Теперь рассмотрим произвольный ненулевой <tex>x \in \mathbb{R}^n</tex>, тогда точка <tex>x' = {x \over \|x\|_2}</tex> также принадлежит <tex>\mathbb{R}^n</tex> по линейности пространства, и в частности, принадлежит <tex>S_2</tex>. Рассмотрим <tex>x'</tex>: <tex> f(x') = \|x'\| = \| {x \over {\| x \|_2}} \| = {{\| x \|} \over {\| x \|_2}} \ge m</tex>, то есть <tex>m \| x \|_2 \le \|x\|</tex>. | Теперь рассмотрим произвольный ненулевой <tex>x \in \mathbb{R}^n</tex>, тогда точка <tex>x' = {x \over \|x\|_2}</tex> также принадлежит <tex>\mathbb{R}^n</tex> по линейности пространства, и в частности, принадлежит <tex>S_2</tex>. Рассмотрим <tex>x'</tex>: <tex> f(x') = \|x'\| = \| {x \over {\| x \|_2}} \| = {{\| x \|} \over {\| x \|_2}} \ge m</tex>, то есть <tex>m \| x \|_2 \le \|x\|</tex>. | ||
Строка 136: | Строка 136: | ||
По теореме Рисса, нормы <tex>\|\cdot\|</tex> и <tex>\|\cdot\|_2</tex> в <tex>Y</tex> эквивалентны; в <tex>\|\cdot\|_2</tex>, очевидно, есть покоординатная сходимость. | По теореме Рисса, нормы <tex>\|\cdot\|</tex> и <tex>\|\cdot\|_2</tex> в <tex>Y</tex> эквивалентны; в <tex>\|\cdot\|_2</tex>, очевидно, есть покоординатная сходимость. | ||
− | Возьмем еще одну последовательность <tex>y_p \to y</tex>, <tex>\|y_m - y_p\| \to 0 \ | + | Возьмем еще одну последовательность <tex>y_p \to y</tex>, <tex>\|y_m - y_p\| \to 0 \implies \|y_m - y_p\|_2 \to 0</tex>. |
Вследствие покоординатной сходимости, <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} - \alpha_k^{(m)} \to 0</tex>. | Вследствие покоординатной сходимости, <tex>\forall k = 1, \ldots, n: \alpha_k^{(p)} - \alpha_k^{(m)} \to 0</tex>. |
Версия 14:35, 14 января 2013
Определение: |
Линейное (векторное) пространство над полем
| — это множество с заданными на нем операциями сложениями и умножения на скаляр такими, что:
Определение: |
Функция
| называется нормой в пространстве , если для нее выполняется:
Заметим, что любое нормированное пространство можно превратить в метрическое, задав метрику как . Заметим, что обратное неверно: например, хоть c и можно наделить линейной структурой, не существует нормы, аналогичной по сходимости с этой метрикой.
Утверждение: |
В нормированных пространствах линейные операции непрерывны. |
Пусть .Тогда , так как . , так как . |
Примеры НП:
- — пространство непрерывных на функций,
- — пространство функций, интегрируемых на множестве с степенью , . В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы.
- — пространство числовых последовательностей, суммируемых с -й степенью, норму можно ввести как
Определение: |
Нормированное пространство | называется B-пространством (Банаховым), если для любой последовательности элементов , для которых из при вытекает существование предела последовательности.
Определение: |
Нормы | , эквивалентны, если сходимость в них равносильна: .
Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть, выполняются рефлексивность, симметричность и транзитивность).
Утверждение: |
Нормы , эквивалентны существуют константы такие, что . |
TODO: Это было "очевидно". Доказал: --Мейнстер Д. 22:46, 13 января 2013 (GST). Проверьте и, если все хорошо, уберите данную плашку. Несложно показать, что из взаимной ограниченности норм следует равносходимость: ; . Теперь убедимся, что без взаимной ограниченности равносходимости также не будет: Так как ее нет, то не существует, например, необходимой константы . Значит, существует последовательность .Рассмотрим тогда последовательность .В норме Но в она будет сходиться к нулю: . каждый элемент имеет норму , то есть, последовательность к нулю в этой норме не сходится, что и требовалось доказать. |
Определение: |
Пространство | конечномерно, если .
Теорема (Рисс): |
В конечномерных пространствах любые две нормы эквивалентны. |
Доказательство: |
Докажем, что произвольная норма в конечномерном пространстве эквивалентна , то есть выберем , далее по отношению эквивалентности получим эквивалентность произвольной норме.Выберем и зафиксируем в пространстве произвольный базис .1. неравенству Коши для сумм) . Заметим, что является нормой в координатной записи, а является константным значением для фиксированного базиса. , (поТаким образом, получили .2. Теперь надо доказать, что Рассмотрим единичный шар по норме теоремой Хаусдорфа и покажем: TODO: если кому-то не лень, может потренироваться и расписать поформальнее : , является компактом в , воспользуемся
Рассмотрим на нем функцию , . Покажем, что она непрерывна.Покажем, что . Раскроем двумя способами модуль.По свойствам нормы, , то есть при стремлении к , расстояние между и также стремится к нулю, что означает непрерывность. Так как теореме Вейерштрасса она принимает минимум на этом компакте, равный (пусть он достигается в точке ). Также не может быть нулем на : пусть для какого-то это так, тогда тогда , что означает, что , то есть . непрерывна на , то поТеперь рассмотрим произвольный ненулевой Таким образом, получили обе части двойного неравенства. , тогда точка также принадлежит по линейности пространства, и в частности, принадлежит . Рассмотрим : , то есть . |
Определение: |
Подпространство в алгебраическом смысле не обязательно замкнуто в исходном пространстве. Поэтому в функциональном анализе собственно подпространством называется именно замкнутое подпространство, а алгебраические подпространства называют линейными подмножествами. |
Теорема: |
Пусть — НП и — линейное конечномерное подмножество в , тогда — замкнуто в , т.е.
. |
Доказательство: |
Пусть для произвольного , --- исходная норма., пусть . По теореме Рисса, нормы и в эквивалентны; в , очевидно, есть покоординатная сходимость.Возьмем еще одну последовательность , .Вследствие покоординатной сходимости, .По полноте вещественной оси, все Так как последовательностей сходятся: . и , то и . |
Пример: теореме Вейерштрасса, любую непрерывную на отрезке функцию можно приблизить полиномами.
, — пространство всех полиномов степени не выше . Очевидно, конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из , то ее пределом будет также полином из . Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в не ограничивать, то замыканием будет все пространство , по