Скрытые Марковские модели — различия между версиями
Gfv (обсуждение | вклад) |
Gfv (обсуждение | вклад) |
||
Строка 4: | Строка 4: | ||
}} | }} | ||
− | Модель представляет из себя марковскую цепь, для которой нам известны начальная вероятность и матрица вероятностей переходов. Скрытой она называется потому, что мы не имеем информации о ее текущем состоянии. Мы получаем информацию на основе некоторого наблюдения, в рассмотренном ниже алгоритме мы будем использовать просто натуральное число от 1 до <tex>N</tex>, как индекс наблюдаемого события. Для каждого состояния скрытой марковской модели задан вектор вероятности эмиссии, который характеризует вероятность наблюдения каждого события, когда модель находится в этом состоянии. Совокупность таких векторов образует матрицу эмиссии. | + | Модель представляет из себя [[Марковская цепь|марковскую цепь]], для которой нам известны начальная вероятность и матрица вероятностей переходов. Скрытой она называется потому, что мы не имеем информации о ее текущем состоянии. Мы получаем информацию на основе некоторого наблюдения, в рассмотренном ниже алгоритме мы будем использовать просто натуральное число от 1 до <tex>N</tex>, как индекс наблюдаемого события. Для каждого состояния скрытой марковской модели задан вектор вероятности эмиссии, который характеризует вероятность наблюдения каждого события, когда модель находится в этом состоянии. Совокупность таких векторов образует матрицу эмиссии. |
Марковская модель <tex>\lambda</tex> задается как <tex>\lambda = \{S, \Omega, \Pi, A, B\}</tex>, где <tex>S = \{s_1, ..., s_n\}</tex> {{---}} состояния, <tex>\Omega = \{\omega_1, ..., \omega_m\}</tex> {{---}} возможные события, <tex>\Pi = \{\pi_1, ..., \pi_n\}</tex> {{---}} начальные вероятности, <tex>A = \{a_{ij}\}</tex> {{---}} матрица переходов, а <tex>B = \{b_{i\omega_k}\}</tex> {{---}} вероятность наблюдения события <tex>\omega_k</tex> после перехода в состояние <tex>s_i</tex>. | Марковская модель <tex>\lambda</tex> задается как <tex>\lambda = \{S, \Omega, \Pi, A, B\}</tex>, где <tex>S = \{s_1, ..., s_n\}</tex> {{---}} состояния, <tex>\Omega = \{\omega_1, ..., \omega_m\}</tex> {{---}} возможные события, <tex>\Pi = \{\pi_1, ..., \pi_n\}</tex> {{---}} начальные вероятности, <tex>A = \{a_{ij}\}</tex> {{---}} матрица переходов, а <tex>B = \{b_{i\omega_k}\}</tex> {{---}} вероятность наблюдения события <tex>\omega_k</tex> после перехода в состояние <tex>s_i</tex>. |
Версия 14:48, 14 января 2013
Определение: |
Скрытая Марковская модель — модель процесса, в которой процесс считается Марковским, причем неизвестно, в каком состоянии | находится система (состояния скрыты), но каждое состояние может с некоторой вероятностью произвести событие , которое можно наблюдать.
Модель представляет из себя марковскую цепь, для которой нам известны начальная вероятность и матрица вероятностей переходов. Скрытой она называется потому, что мы не имеем информации о ее текущем состоянии. Мы получаем информацию на основе некоторого наблюдения, в рассмотренном ниже алгоритме мы будем использовать просто натуральное число от 1 до , как индекс наблюдаемого события. Для каждого состояния скрытой марковской модели задан вектор вероятности эмиссии, который характеризует вероятность наблюдения каждого события, когда модель находится в этом состоянии. Совокупность таких векторов образует матрицу эмиссии.
Марковская модель
задается как , где — состояния, — возможные события, — начальные вероятности, — матрица переходов, а — вероятность наблюдения события после перехода в состояние .Пример
Рассмотрим пример скрытой марковской модели. У Деда Мороза есть три мешка с подарками в разноцветной упаковке: красной, синей, зеленой и фиолетовой. Ночью Дед Мороз пробирается в квартиру и тайком выкладывает подарки под елкой в ряд, доставая по одному подарку из мешка. Наутро мы обнаруживаем упорядоченную последовательность из пяти подарков и хотим сделать наилучшее предположение о последовательности мешков, из которых он доставал эти подарки. Дед Мороз с мешками — скрытая марковская модель. При этом 4 цвета — пространство из
возможных событий, 3 мешка — количество состояний , 5 подарков — наши наблюдений, каждое из которых представлено цифрой — номером цвета — от 1 до 5. Мы знаем, каковы вероятности того, что Дед Мороз начнет доставать подарки из мешка с номером — вектор . Мы также знаем матрицу переходов , какова вероятность того, что от мешка с номером Дед Мороз переходит к мешку с номером . Мешки Деда Мороза бесконечны, но мы точно знаем, каково соотношение цветов подарков в каждом мешке ему загрузили на заводе в Великом Устюге. Это матрица вероятностей эмиссии .Алгоритмы на СММ
- Алгоритм Витерби — делает наилучшее предположение о последовательности состояний скрытой модели на основе последовательности наблюдений.
- Алгоритм "Вперед-Назад" — находит вероятность попадания в состояние на -ом шаге.
- Алгоритм Баума-Вэлша — меняет , максимизируя вероятность наблюдения последовательности событий .