Примеры использования Марковских цепей — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 6: Строка 6:
 
Если <tex>p_i^{(1)}</tex> вероятность того, что исходом эксперимента будет состояние <tex>s_i</tex>. Тогда
 
Если <tex>p_i^{(1)}</tex> вероятность того, что исходом эксперимента будет состояние <tex>s_i</tex>. Тогда
  
<tex>p_i^{(1)} = p_1^{(0)}p_{1i} + p_2^{(0)}p_{2i} + p_3^{(0)}p_{3i} + ... +p_n^{(0)}p_{ni} (*) </tex>  
+
<tex>p_i^{(1)} = p_1^{(0)}p_{1i} + p_2^{(0)}p_{2i} + p_3^{(0)}p_{3i} + ... +p_n^{(0)}p_{ni} (*) </tex> .
  
  
Строка 12: Строка 12:
 
Также заметим, что:
 
Также заметим, что:
  
<tex>p_{j1}+p_{j2}+p_{j3}+ ... +p_{jn} = 1</tex>
+
<tex>p_{j1}+p_{j2}+p_{j3}+ ... +p_{jn} = 1</tex>.
 
*Матрица T называется матрицей перехода. В общем случае она имеет вид:
 
*Матрица T называется матрицей перехода. В общем случае она имеет вид:
  
Строка 139: Строка 139:
 
#Среди владельцев автомобилей марки A 20% сказали что выберут опять эту же марку, 50% сказали, что они бы перешли на марку B, а 30% заявили, что предпочли бы марку С.  
 
#Среди владельцев автомобилей марки A 20% сказали что выберут опять эту же марку, 50% сказали, что они бы перешли на марку B, а 30% заявили, что предпочли бы марку С.  
 
#Среди владельцев автомобилей марки B 20% сказали, что перейдут на марку A, в то время как 70% заявили, что приобрели бы опять автомобиль марки B, а 10% заявили, что в следующий раз предпочли бы марку C.  
 
#Среди владельцев автомобилей марки B 20% сказали, что перейдут на марку A, в то время как 70% заявили, что приобрели бы опять автомобиль марки B, а 10% заявили, что в следующий раз предпочли бы марку C.  
#Среди владельцев автомобилей С, 30% ответили, что перешли бы на марку A, 30% сказали, что перешли бы на марку B, а 40% заявили, что остались бы верны той же марке С.
+
#Среди владельцев автомобилей С 30% ответили, что перешли бы на марку A, 30% сказали, что перешли бы на марку B, а 40% заявили, что остались бы верны той же марке С.
  
 
Вопрос 1 :  Если некто приобрел автомобиль марки A, то какова вероятность, что его второй машиной будет автомобиль марки C?
 
Вопрос 1 :  Если некто приобрел автомобиль марки A, то какова вероятность, что его второй машиной будет автомобиль марки C?
Строка 155: Строка 155:
 
0.3 & 0.3 & 0.4
 
0.3 & 0.3 & 0.4
 
\end{bmatrix}
 
\end{bmatrix}
</tex>
+
</tex>.
  
Для ответа на первый вопрос имеем: <tex>p^{(0)} =</tex>  <tex>(1,0,0)</tex> поэтому  
+
Для ответа на первый вопрос имеем: <tex>p^{(0)} =</tex>  <tex>(1,0,0)</tex> , поэтому  
  
 
<tex>p^{(1)} = </tex> <tex>(1,0,0) \times</tex>
 
<tex>p^{(1)} = </tex> <tex>(1,0,0) \times</tex>
Строка 168: Строка 168:
 
</tex>
 
</tex>
 
<tex> = </tex>
 
<tex> = </tex>
<tex>(0.2,0.5,0.3)</tex>
+
<tex>(0.2,0.5,0.3)</tex>.
  
 
Вероятность того, что вторая машина будет марки С, равна 0.3. Для ответа на второй вопрос требуется найти  
 
Вероятность того, что вторая машина будет марки С, равна 0.3. Для ответа на второй вопрос требуется найти  
Строка 179: Строка 179:
 
0.24 & 0.48 & 0.28
 
0.24 & 0.48 & 0.28
 
\end{bmatrix}
 
\end{bmatrix}
</tex>
+
</tex>.
  
 
Для (2) имеем <tex>p^{(2)} = </tex> <tex> (0,0.5,0.5) </tex> и  
 
Для (2) имеем <tex>p^{(2)} = </tex> <tex> (0,0.5,0.5) </tex> и  

Версия 19:49, 14 января 2013

Обозначения

Предположим, что проводится серия экспериментов с возможными исходами [math]s_1,s_2,s_3,...s_n[/math]. Назовём эти исходы состояниями.

  • [math]p_i^{(0)} [/math] — вероятность того, что мы начинаем в состоянии [math]s_i[/math];
  • [math]p_{ij} [/math] — вероятность того, что в результате эксперимента состояние было изменено от состояния [math]s_i[/math] к состоянию [math]s_j[/math];

Если [math]p_i^{(1)}[/math] вероятность того, что исходом эксперимента будет состояние [math]s_i[/math]. Тогда

[math]p_i^{(1)} = p_1^{(0)}p_{1i} + p_2^{(0)}p_{2i} + p_3^{(0)}p_{3i} + ... +p_n^{(0)}p_{ni} (*) [/math] .


Это означает, что вероятность исхода в состоянии [math]s_i[/math] равна сумме вероятностей начать эксперимент в некотором другом состоянии и окончить в [math]s_i[/math]. Также заметим, что:

[math]p_{j1}+p_{j2}+p_{j3}+ ... +p_{jn} = 1[/math].

  • Матрица T называется матрицей перехода. В общем случае она имеет вид:

[math] \begin{bmatrix} p_{11} & p_{12} & p_{13} & ... & p_{1n} \\ p_{21} & p_{22} & p_{23} & ... & p_{2n} \\ p_{31} & p_{32} & p_{33} & ... & p_{3n} \\ p_{41} & p_{42} & p_{43} & ... & p_{4n} \\ . & . & . & ... & .\\ . & . & . & ... & .\\ . & . & . & ... & .\\ p_{n1} & p_{n2} & p_{n3} & ... & p_{nn} \\ \end{bmatrix} [/math].


Пусть [math] p^{(0)}=[/math] [math](p_1^{(0)},p_2^{(0)},p_3^{(0)},... ,p_n^{(0)})[/math] и [math] p^{(1)}=[/math] [math](p_1^{(1)},p_2^{(1)},p_3^{(1)},...,p_n^{(1)})[/math]

, тогда [math] (p_1^{(1)},p_2^{(1)},p_3^{(1)}... ,p_n^{(1)})=[/math] [math](p_1^{(0)},p_2^{(0)},p_3^{(0)}.. ,p_n^{(0)})[/math] [math] \begin{bmatrix} p_{11} & p_{12} & p_{13} & ... & p_{1n} \\ p_{21} & p_{22} & p_{23} & ... & p_{2n} \\ p_{31} & p_{32} & p_{33} & ... & p_{3n} \\ p_{41} & p_{42} & p_{43} & ... & p_{4n} \\ . & . & . & ... & .\\ . & . & . & ... & .\\ . & . & . & ... & .\\ p_{n1} & p_{n2} & p_{n3} & ... & p_{nn} \\ \end{bmatrix} [/math].

Использование матриц приводит к более компактной записи условий. По своей сути, перемножение строки [math] p_i^{(0)} [/math] с матрицей [math] T [/math] эквивалентно уравнению [math] (*) [/math], рассмотренному ранее.

Прогноз погоды

Условие

Погода классифицируется в прогнозах как ясная, умеренно пасмурная и пасмурная.

  1. Если погода ясная, то вероятность, что она будет ясной на следующий день, составляет 0.5; вероятность, что она будет умеренно пасмурной, равна 0.4; а вероятность пасмурной погоды на следующий день составляет 0.1.
  2. Если погода умеренно пасмурная, то вероятность, что на следующий день она будет ясной, равна 0.3; вероятность, что погода останется умеренно пасмурной, равна 0.5; а вероятность пасмурной погоды на следующий день составляет 0.2.
  3. Если же погода пасмурная, то вероятность, что она будет ясной на следующий день составляет 0.2; вероятность что она станет умеренно пасмурной, равна 0.4; вероятность что на следующий день она останется пасмурной, равна 0.4.


Вопрос 1 : Если вероятность ясной погоды в воскресенье равна 0.6, а вероятность умеренно пасмурной — 0.4, то какова вероятность, что погода в понедельник будет ясной?

Вопрос 2 : Какова вероятность, что во вторник погода будет умеренно пасмурной?


Решение

Если порядок, в котором перечисляются погодные условия, таков: ясно, умеренно пасмурно и пасмурно, то:

[math]p^{(0)} =[/math] [math](0.6,0.4,0)[/math],

[math] T = \begin{bmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.4 & 0.4 \end{bmatrix} [/math].

Следовательно, [math]p^{(1)} = [/math] [math](0.6,0.4,0) \times[/math] [math] \begin{bmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.4 & 0.4 \end{bmatrix} [/math] [math] = [/math] [math](0.42,0.44,0.14)[/math] и вероятность, что в понедельник будет ясная погода, равна [math]0.42[/math].

Пусть [math]p_1^{(2)} [/math] — вероятность того, что во вторник будет ясная погода, [math]p_2^{(2)} [/math] — вероятность того, что во вторник будет умеренно пасмурно и [math]p_3^{(2)} [/math] — вероятность того, что во вторник будет пасмурно.

Пусть [math]p^{(2)} = [/math] [math] (p_1^{(2)},p_2^{(2)},p_3^{(2)})[/math].

Тогда [math]p^{(2)} = [/math] [math] (0.42,0.44,0.14) \times[/math] [math] \begin{bmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.5 & 0.2 \\ 0.2 & 0.4 & 0.4 \end{bmatrix} [/math] [math] = [/math] [math](0.37,0.444,0.186)[/math].

Следовательно, вероятность того, что во вторник будет умеренно пасмурная погода равна [math]0.444[/math].


Пусть [math]p_i^{(m)} [/math] — вероятность, что исходом m-го проведения эксперимента будет состояние [math]s_i[/math] и

[math]p^{(m)} =[/math] [math](p_1^{(m)},p_2^{(m)},p_3^{(m)},...,p_n^{(m)}).[/math]

Теорема:
Для любого положительного целого числа m выполняется [math]p^{(m)} =[/math] [math]p^{(0)} \times T^{(m)}[/math].
Доказательство:
[math]\triangleright[/math]

Докажем теорему, используя индукцию. Было показано (в примере про погоду), что для [math] m = 1 [/math] утверждение справедливо. Предположим, что оно справедливо для [math]n=k[/math] , так что [math]p^{(k)} =[/math] [math]p^{(0)} \times T^{(k)}.[/math]Поскольку

[math]p_j^{(k+1)} = [/math] [math]p_1^{(k)}p_{1j} +[/math] [math]p_2^{(k)}p_{2j} +[/math] [math]p_3^{(k)}p_{3j} +[/math] [math]p_n^{(k)}p_{nj} [/math] , то

[math]p^{(k+1)} = [/math] [math]p^{(k)} T =[/math] [math]p^{(0)} T^k T =[/math] [math]p^{(0)} T^{k+1}.[/math]
[math]\triangleleft[/math]


Оценка будущих продаж

Цепи Маркова также применяются при оценке будущих продаж. Например, сделав опрос среди покупателей той или иной марки автомобиля о их следующем выборе, можно составить матрицу [math] T [/math].

Условие

В процессе опроса владельцев автомобилей трех американских марок: марки A, марки B, марки С, им был задан вопрос о том, какую торговую марку они бы выбрали для следующей покупки.

  1. Среди владельцев автомобилей марки A 20% сказали что выберут опять эту же марку, 50% сказали, что они бы перешли на марку B, а 30% заявили, что предпочли бы марку С.
  2. Среди владельцев автомобилей марки B 20% сказали, что перейдут на марку A, в то время как 70% заявили, что приобрели бы опять автомобиль марки B, а 10% заявили, что в следующий раз предпочли бы марку C.
  3. Среди владельцев автомобилей С 30% ответили, что перешли бы на марку A, 30% сказали, что перешли бы на марку B, а 40% заявили, что остались бы верны той же марке С.

Вопрос 1 : Если некто приобрел автомобиль марки A, то какова вероятность, что его второй машиной будет автомобиль марки C?

Вопрос 2 : Если при покупке первой машины покупатель подбросил монету, выбирая между автомобилями марки B и С, то какова вероятность, что его третьей машиной станет автомобиль марки B?

Решение

Матрица перехода для этого события имеет вид:

[math] \begin{bmatrix} 0.2 & 0.5 & 0.3 \\ 0.2 & 0.7 & 0.1 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} [/math].

Для ответа на первый вопрос имеем: [math]p^{(0)} =[/math] [math](1,0,0)[/math] , поэтому

[math]p^{(1)} = [/math] [math](1,0,0) \times[/math] [math] \begin{bmatrix} 0.2 & 0.5 & 0.3 \\ 0.2 & 0.7 & 0.1 \\ 0.3 & 0.3 & 0.4 \end{bmatrix} [/math] [math] = [/math] [math](0.2,0.5,0.3)[/math].

Вероятность того, что вторая машина будет марки С, равна 0.3. Для ответа на второй вопрос требуется найти

[math]T^{(2)} = [/math] [math] \begin{bmatrix} 0.23 & 0.54 & 0.23 \\ 0.21 & 0.62 & 0.17 \\ 0.24 & 0.48 & 0.28 \end{bmatrix} [/math].

Для (2) имеем [math]p^{(2)} = [/math] [math] (0,0.5,0.5) [/math] и

[math]p^{(2)} = [/math] [math](0,0.5,0.5) \times[/math] [math] \begin{bmatrix} 0.23 & 0.54 & 0.23 \\ 0.21 & 0.62 & 0.17 \\ 0.24 & 0.48 & 0.28 \end{bmatrix} [/math] [math] = [/math] [math](0.225,0.55,0.225)[/math] поэтому вероятность того, что второй автомобиль будет марки A равна 0.225.



Литература

  • Марков А. А., Распространение закона больших чисел на величины, зависящие друг от друга. — Известия физико-математического общества при Казанском университете. — 2-я серия. — Том 15. (1906) — С. 135—156.
  • Kemeny J. G., Snell J. L., Finite Markov chains. — The University Series in Undergraduate Mathematics. — Princeton: Van Nostrand, 1960 (перевод: Кемени Дж. Дж., Снелл Дж. Л. Конечные цепи Маркова. — М.: Наука. 1970. — 272 с.)