Топологические векторные пространства — различия между версиями
м (bugfix) |
Rybak (обсуждение | вклад) м |
||
Строка 6: | Строка 6: | ||
|definition= | |definition= | ||
'''Топологическое векторное пространство''' — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны в этой топологии, то есть: | '''Топологическое векторное пространство''' — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны в этой топологии, то есть: | ||
− | * непрерывность умножения на скаляр: <tex> \alpha x \to \alpha_0 x_0 </tex>, если <tex> \alpha \to \alpha_0 </tex>, <tex> x \to x_0 </tex>. Означает, что для любой окрестности <tex> U(\alpha_0 x_0) </tex> существует <tex> \varepsilon > 0 </tex> и существует <tex> U(x_0): |\alpha - \alpha_0| < \varepsilon, x \in U(x_0) \ | + | * непрерывность умножения на скаляр: <tex> \alpha x \to \alpha_0 x_0 </tex>, если <tex> \alpha \to \alpha_0 </tex>, <tex> x \to x_0 </tex>. Означает, что для любой окрестности <tex> U(\alpha_0 x_0) </tex> существует <tex> \varepsilon > 0 </tex> и существует <tex> U(x_0): |\alpha - \alpha_0| < \varepsilon, x \in U(x_0) \implies \alpha x \in U(\alpha_0 x_0) </tex> |
− | * непрерывность сложения векторов: <tex> x + y \to x_0 + y_0 </tex>, если <tex> x \to x_0 </tex>, <tex> y \to y_0 </tex>. Означает, что для любой окрестности <tex> U(x_0 + y_0) </tex> существуют окрестности <tex> U(x_0), U(y_0): \forall x \in U(x_0) \forall y \in U(y_0) \ | + | * непрерывность сложения векторов: <tex> x + y \to x_0 + y_0 </tex>, если <tex> x \to x_0 </tex>, <tex> y \to y_0 </tex>. Означает, что для любой окрестности <tex> U(x_0 + y_0) </tex> существуют окрестности <tex> U(x_0), U(y_0): \forall x \in U(x_0) \forall y \in U(y_0) \implies x + y \in U(x_0 + y_0) </tex>. |
}} | }} | ||
Строка 63: | Строка 63: | ||
# Рассмотрим отображение <tex> x \mapsto x + x_0 </tex>, то есть сдвиг на <tex> x_0 </tex>. Это отображение взаимно однозначно, следовательно непрерывно, то есть если <tex> G \in \tau </tex> (открыто), <tex> G + x_0 </tex> также открыто. То есть получили, что векторная топология инвариантна относительно сдвигов. | # Рассмотрим отображение <tex> x \mapsto x + x_0 </tex>, то есть сдвиг на <tex> x_0 </tex>. Это отображение взаимно однозначно, следовательно непрерывно, то есть если <tex> G \in \tau </tex> (открыто), <tex> G + x_0 </tex> также открыто. То есть получили, что векторная топология инвариантна относительно сдвигов. | ||
− | # Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. <tex> \lambda x \to 0, x \to 0, \lambda \to 0 </tex>, то есть <tex> \forall U(0) \exists \delta > 0, W(0): |\lambda| \le \delta </tex> <tex> x \in W(0) \ | + | # Установим, что можно создать базу окрестностей нуля, составляющую из радиально-уравновешенных множеств. <tex> \lambda x \to 0, x \to 0, \lambda \to 0 </tex>, то есть <tex> \forall U(0) \exists \delta > 0, W(0): |\lambda| \le \delta </tex> <tex> x \in W(0) \implies \lambda x \in U(0) \iff \lambda W(0) \subset U(0) \implies \bigcup\limits_{|\lambda| \le \delta} \lambda W(0) \subset U(0) </tex>, где <tex> \lambda W(0) </tex> — уравновешено и окрестность 0. |
− | #: Для радиальности: <tex> \forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \ | + | #: Для радиальности: <tex> \forall x_0 \in X, \lambda \to 0, \lambda x_0 \to 0 x_0 = 0 \implies \forall U(0) \exists \delta > 0: |\lambda| \le \delta, \lambda x_0 \in U(0) </tex>. <tex> x_0 \in {1 \over \lambda} U(0), |\lambda| \le \delta, \left| {1 \over \lambda} \right| \ge {1 \over \delta} </tex>, то есть <tex> U(0) </tex> поглощает <tex> x_0 </tex>. |
− | # <tex> x + y \to 0, x, y \to 0 \forall U(0) \exists U_1(0) \ | + | # <tex> x + y \to 0, x, y \to 0 \forall U(0) \exists U_1(0) \implies U_1(0) + U_1(0) \subset U(0) </tex>. |
В обратную сторону, то есть если соблюдаются эти три свойства, в этой топологии линейные операции непрерывны: | В обратную сторону, то есть если соблюдаются эти три свойства, в этой топологии линейные операции непрерывны: | ||
Строка 75: | Строка 75: | ||
Непрерывность умножения: пусть <tex> \lambda \to \lambda_0, x \to x_0 </tex>, покажем что <tex> \lambda x \to \lambda_0 x_0 </tex>. Пусть <tex> \lambda = \lambda_0 + \alpha, \alpha \to 0 </tex>, <tex> x = x_0 + u, u \to 0 </tex>. Тогда <tex> \lambda x = (\lambda_0 + \alpha) (x_0 + u) = \lambda_0 x_0 + (\lambda_0 u + \alpha x_0 + \alpha u) </tex>. Покажем, что вторая скобка стремится к нулю.<br/> | Непрерывность умножения: пусть <tex> \lambda \to \lambda_0, x \to x_0 </tex>, покажем что <tex> \lambda x \to \lambda_0 x_0 </tex>. Пусть <tex> \lambda = \lambda_0 + \alpha, \alpha \to 0 </tex>, <tex> x = x_0 + u, u \to 0 </tex>. Тогда <tex> \lambda x = (\lambda_0 + \alpha) (x_0 + u) = \lambda_0 x_0 + (\lambda_0 u + \alpha x_0 + \alpha u) </tex>. Покажем, что вторая скобка стремится к нулю.<br/> | ||
1) <tex>\alpha x_0</tex> из радиальной окрестности нуля, значит стремится к нулю.<br/> | 1) <tex>\alpha x_0</tex> из радиальной окрестности нуля, значит стремится к нулю.<br/> | ||
− | 2) <tex>\alpha \to 0 \ | + | 2) <tex>\alpha \to 0 \implies |\alpha| \le 1,</tex>по условию теоремы<tex> \exists U(0)</tex> - уравновешенное <tex> \implies \alpha U(0) \subset U(0) \implies \alpha u \to 0 </tex>.<br/> |
− | 3) по условию теоремы <tex>\forall U(0) \exists U_1 (0) : U_1(0)+U_1(0) \subset U(0) \ | + | 3) по условию теоремы <tex>\forall U(0) \exists U_1 (0) : U_1(0)+U_1(0) \subset U(0) \implies 2U_1(0) \subset U(0)</tex>. Раз <tex>U_1(0)</tex> {{---}} окрестность 0 <tex> \implies \exists 2U_2(0) \subset U_1(0) ... \implies 2^n U_n(0) \subset ... \subset 2 U_1 (0) \subset U(0)</tex> |
− | <tex> \ | + | <tex> \implies \exists n_1 : | {\lambda_0 \over 2^{n_1}} | < 1 \implies </tex> если <tex>u \in U_{n_1}(0), 2^{n_1} U_{n_1}(0) \subset U \implies 2^{n_1} u \in U(0) \implies {\lambda_0 \over 2^{n_1}} 2^{n_1} u \in U(0) \implies \lambda_0 u \in U \implies \lambda_0 u \to 0</tex>. |
Получили, что скобка стремится к нулю, значит умножение непрерывно. | Получили, что скобка стремится к нулю, значит умножение непрерывно. | ||
Строка 100: | Строка 100: | ||
<tex> p_M(x + y) \le p_M(x) + p_M(y) </tex> | <tex> p_M(x + y) \le p_M(x) + p_M(y) </tex> | ||
− | <tex> \forall \varepsilon > 0 \exists \lambda_1, \lambda_2: p_M(x) < \lambda_1 < p_M(x) + \varepsilon </tex>, <tex> p_M(y) < \lambda_2 < p_M(y) + \varepsilon </tex>, <tex> x \in \lambda_1 M, y \in \lambda_2 M \ | + | <tex> \forall \varepsilon > 0 \exists \lambda_1, \lambda_2: p_M(x) < \lambda_1 < p_M(x) + \varepsilon </tex>, <tex> p_M(y) < \lambda_2 < p_M(y) + \varepsilon </tex>, <tex> x \in \lambda_1 M, y \in \lambda_2 M \implies {x \over \lambda_1}, {y \over \lambda_2} \in M </tex>. Рассмотрим <tex> \alpha = {\lambda_1 \over \lambda_1 + \lambda_2}, \beta = {\lambda_2 \over \lambda_1 + \lambda_2} </tex>, заметим, что <tex> \alpha + \beta = 1 </tex>, из выпуклости получим, что <tex> \alpha {x \over \lambda_1} + \beta {y \over \lambda_2} \in M \implies {x + y \over \lambda_1 + \lambda_2} \in M \implies x + y \in (\lambda_1 + \lambda_2) M </tex>, то есть <tex> p_M(x + y) < \lambda_1 + \lambda_2 < p_M(x) + p_M(y) + 2 \varepsilon </tex>, сделав предельный переход, получим <tex> p_M(x + y) \le p_M(x) + p_M(y) </tex>. |
<tex> p_M(\lambda x) = |\lambda| p_M(x) </tex> проверяется аналогично. | <tex> p_M(\lambda x) = |\lambda| p_M(x) </tex> проверяется аналогично. | ||
Строка 120: | Строка 120: | ||
В обратную: пусть <tex> V </tex> — ограниченная выпуклая окрестность нуля. <tex> W </tex> — радиальная уравновешенная) окрестность 0: <tex> W \subset V </tex>, <tex> \mathrm{Cov} W </tex> — выпуклая оболочка множества <tex> W </tex>, <tex> V </tex> — выпуклая, <tex> \mathrm{Cov} W \subset V </tex>, <tex> \mathrm{Cov} W </tex> — радиальное уравновешенное множество, так как <tex> W </tex> — такое же. Из ограниченности <tex> V </tex> следует ограниченность <tex> \mathrm{Cov} W </tex>, то есть, мы построили <tex> V^* = \mathrm{Cov} W </tex> — радиальную уравновешенную выпуклую окрестность <tex> 0 </tex>. | В обратную: пусть <tex> V </tex> — ограниченная выпуклая окрестность нуля. <tex> W </tex> — радиальная уравновешенная) окрестность 0: <tex> W \subset V </tex>, <tex> \mathrm{Cov} W </tex> — выпуклая оболочка множества <tex> W </tex>, <tex> V </tex> — выпуклая, <tex> \mathrm{Cov} W \subset V </tex>, <tex> \mathrm{Cov} W </tex> — радиальное уравновешенное множество, так как <tex> W </tex> — такое же. Из ограниченности <tex> V </tex> следует ограниченность <tex> \mathrm{Cov} W </tex>, то есть, мы построили <tex> V^* = \mathrm{Cov} W </tex> — радиальную уравновешенную выпуклую окрестность <tex> 0 </tex>. | ||
− | <tex> V^* \to p_{V^*} </tex> — функционал Минковского — полунорма. <tex> V^* </tex> ограничено, тогда <tex> \{ {1 \over n} V^* \} </tex> — база окрестностей 0. Так как пространство Хаусдорфово, то <tex> \bigcap\limits_{n=1}^{\infty} {1 \over n} V^* = \{0\} \ | + | <tex> V^* \to p_{V^*} </tex> — функционал Минковского — полунорма. <tex> V^* </tex> ограничено, тогда <tex> \{ {1 \over n} V^* \} </tex> — база окрестностей 0. Так как пространство Хаусдорфово, то <tex> \bigcap\limits_{n=1}^{\infty} {1 \over n} V^* = \{0\} \implies p_{V^*}(x) = 0 \implies x = 0 </tex>, то есть <tex> p_{V^*} </tex> — норма, а <tex> \{ {1 \over n} V^*\} </tex> — база окрестностей нуля, нормируемых функционалом Минковского. |
}} | }} | ||
[[Категория: Функциональный анализ 3 курс]] | [[Категория: Функциональный анализ 3 курс]] |
Версия 19:00, 15 января 2013
Рассмотрим множество
. Множество таких функций образуют линейное пространство. Если определять предел в поточечном смысле, операции сложения и умножения на число в этом пространстве непрерывны. Мотивация введения топологических векторных пространств — обобщение этой ситуации на абстрактный случай.
Определение: |
Топологическое векторное пространство — линейное пространство, наделенной такой топологией, что операции сложения векторов и умножения на скаляр в ней непрерывны в этой топологии, то есть:
|
В ситуации , когда предел определен поточечно, если рассмотреть , объявить их окрестностями нулевой функции — в такой базе окрестности нуля функции будут непрерывны и предел будет поточечным.
Как охарактеризовать векторную топологию? Пусть
— линейное пространство, , тогда определимЗаметим, что
, но обратное не верно. Например, в , : , но .
Определение: |
закругленное/уравновешенное, если . |
Определение: |
поглощает , если . |
Определение: |
радиальное/поглощающее, если оно поглощает любую конечную систему точек. Для проверки радиальности достаточно проверить поглощение каждой конкретной точки. |
Определение: |
выпуклое, если , то есть множество содержит отрезок, соединяющий любые два его элемента. |
Существует стандартная конструкция, которая позволяет уравновесить любое множество.
Утверждение: |
Пусть и , и Тогда - уравновешенное. |
Пусть , проверим, что :. . . . Тогда . Тогда , но и , что и требовалось доказать. |
Теорема (характеристика векторной топологии): |
|
Доказательство: |
В прямую сторону:
В обратную сторону, то есть если соблюдаются эти три свойства, в этой топологии линейные операции непрерывны: Непрерывность сложения:
Непрерывность умножения: пусть |
Любое НП является частным случаем ТВП. Обратное в общем случае неверно, в связи с чем возникает вопрос о том, в каком случае ТВП можно нормировать. Ответ на него дает понятие функционала Минковского.
Определение: |
Пусть | — линейное пространство, — радиальное подмножество, тогда функционал Минковского определяется как .
Заметим, что если — радиальны и , то .
Пример:
- — НП, , сдедовательно, норма — частный случай функционала Минковского.
Утверждение: |
Если — уравновешенное радиальное выпуклое множество, — полунорма на . |
, , . Рассмотрим , заметим, что , из выпуклости получим, что , то есть , сделав предельный переход, получим . проверяется аналогично. |
Определение: |
Топологическое пространство | называется Хаусдорфовым, если
Теорема (Колмогоров): |
Хаусдорфово ТВП нормируемо тогда и только тогда, когда у нуля есть ограниченная выпуклая окрестность. |
Доказательство: |
В прямую сторону: если ТВП нормируемо, то
В обратную: пусть — ограниченная выпуклая окрестность нуля. — радиальная уравновешенная) окрестность 0: , — выпуклая оболочка множества , — выпуклая, , — радиальное уравновешенное множество, так как — такое же. Из ограниченности следует ограниченность , то есть, мы построили — радиальную уравновешенную выпуклую окрестность . — функционал Минковского — полунорма. ограничено, тогда — база окрестностей 0. Так как пространство Хаусдорфово, то , то есть — норма, а — база окрестностей нуля, нормируемых функционалом Минковского. |