223
правки
Изменения
→норма для R^infty
: почему? --[[Участник:Dgerasimov|Дмитрий Герасимов]] 09:52, 13 января 2013 (GST)
:: Допустим, это можно сделать, тогда <tex> \|x\| = \rho(0, x) = \sum\limits_{k=1}^{\infty} 2^{-k} \frac {|x_k|} {1 + |x_k|} </tex>, ну и дальше понятно, что там однородность поедет. --[[Участник:Sementry|Мейнстер Д.]] 21:15, 13 января 2013 (GST)
::: Неубедительно. Если там однородность поедет, то это вообще даже не норма, и из этого ничего не следует. Разве обязательно, чтобы <tex>\|x\| = \rho(0,x)</tex>? А вдруг есть другой способ задать норму, и в ней то все будет? Взять, например, пространство <tex>\mathbb{R}</tex> с той же метрикой: <tex>\rho(x, y) = \frac {|x - y|} {1 + |x - y|}</tex>. Тут можно взять любую норму, например <tex>\|x\| = |x|</tex>, и сходимость по норме будет равносильна сходимости по метрике. А, если бы взяли <tex>\|x\| = \rho(0,x)</tex>, то однородность точно также бы поехала. --[[Участник:Dmitriy D.|Dmitriy D.]] 21:29, 15 января 2013 (GST)
== компактность единичной сферы в норме \|\|_2 ==