Нормированные пространства (3 курс) — различия между версиями
м (последний пример НП, опечатка - fixed.) |
|||
Строка 44: | Строка 44: | ||
* <tex>X = C[a; b]</tex> — пространство непрерывных на <tex>[a; b]</tex> функций, <tex>\| f \| = \max\limits_{x \in [a; b]} |f(x)|</tex> | * <tex>X = C[a; b]</tex> — пространство непрерывных на <tex>[a; b]</tex> функций, <tex>\| f \| = \max\limits_{x \in [a; b]} |f(x)|</tex> | ||
* <tex>X = L_p</tex> — пространство функций, интегрируемых на множестве <tex> E </tex> с <tex> p </tex> степенью ,<tex>\| f \| = \left( \int\limits_E |f(x)|^p d \mu \right)^{1 \over p}</tex>. В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы. | * <tex>X = L_p</tex> — пространство функций, интегрируемых на множестве <tex> E </tex> с <tex> p </tex> степенью ,<tex>\| f \| = \left( \int\limits_E |f(x)|^p d \mu \right)^{1 \over p}</tex>. В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы. | ||
− | * <tex>X = \ell_p</tex> — пространство числовых последовательностей, суммируемых с <tex>p</tex>-й степенью, норму можно ввести как <tex>\|x\|_p = { \left( \sum\limits_{n=1}^{\infty} |x_n|^p \right) }^p</tex> | + | * <tex>X = \ell_p</tex> — пространство числовых последовательностей, суммируемых с <tex>p</tex>-й степенью, норму можно ввести как <tex>\|x\|_p = { \left( \sum\limits_{n=1}^{\infty} |x_n|^p \right) }^{1 \over p}</tex> |
{{Определение | {{Определение |
Версия 20:39, 15 января 2013
Определение: |
Линейное (векторное) пространство над полем
| — это множество с заданными на нем операциями сложениями и умножения на скаляр такими, что:
Определение: |
Функция
| называется нормой в пространстве , если для нее выполняется:
Заметим, что любое нормированное пространство можно превратить в метрическое, задав метрику как . Заметим, что обратное неверно: например, хоть c и можно наделить линейной структурой, не существует нормы, аналогичной по сходимости с этой метрикой.
Утверждение: |
В нормированных пространствах линейные операции непрерывны. |
Пусть .Тогда , так как . , так как . |
Примеры НП:
- — пространство непрерывных на функций,
- — пространство функций, интегрируемых на множестве с степенью , . В таком пространстве отождествленны функции, различающиеся на множестве меры ноль, иначе, например, интеграл функции, почти везде равной нулю, будет нулевым, хотя сама функция ненулевая, что нарушит первую аксиому нормы.
- — пространство числовых последовательностей, суммируемых с -й степенью, норму можно ввести как
Определение: |
Нормированное пространство | называется B-пространством (Банаховым), если для любой последовательности элементов , для которых из при вытекает существование предела последовательности.
Определение: |
Нормы | , эквивалентны, если сходимость в них равносильна: .
Очевидно, что отношение эквивалентности норм является отношением эквивалентности (то есть, выполняются рефлексивность, симметричность и транзитивность).
Утверждение: |
Нормы , эквивалентны существуют константы такие, что . |
TODO: Это было "очевидно". Доказал: --Мейнстер Д. 22:46, 13 января 2013 (GST). Проверьте и, если все хорошо, уберите данную плашку. Несложно показать, что из взаимной ограниченности норм следует равносходимость: ; . Теперь убедимся, что без взаимной ограниченности равносходимости также не будет: Так как ее нет, то не существует, например, необходимой константы . Значит, существует последовательность .Рассмотрим тогда последовательность .В норме Но в она будет сходиться к нулю: . каждый элемент имеет норму , то есть, последовательность к нулю в этой норме не сходится, что и требовалось доказать. |
Определение: |
Пространство | конечномерно, если .
Теорема (Рисс): |
В конечномерных пространствах любые две нормы эквивалентны. |
Доказательство: |
Докажем, что произвольная норма в конечномерном пространстве эквивалентна , то есть выберем , далее по отношению эквивалентности получим эквивалентность произвольной норме.Выберем и зафиксируем в пространстве произвольный базис .1. неравенству Коши для сумм) . Заметим, что является нормой в координатной записи, а является константным значением для фиксированного базиса. , (поТаким образом, получили .2. Теперь надо доказать, что Рассмотрим единичный шар по норме теоремой Хаусдорфа и покажем: TODO: если кому-то не лень, может потренироваться и расписать поформальнее : , является компактом в , воспользуемся
Рассмотрим на нем функцию , . Покажем, что она непрерывна.Покажем, что . Раскроем двумя способами модуль.По свойствам нормы, , то есть при стремлении к , расстояние между и также стремится к нулю, что означает непрерывность. Так как теореме Вейерштрасса она принимает минимум на этом компакте, равный (пусть он достигается в точке ). Также не может быть нулем на : пусть для какого-то это так, тогда тогда , что означает, что , то есть . непрерывна на , то поТеперь рассмотрим произвольный ненулевой Таким образом, получили обе части двойного неравенства. , тогда точка также принадлежит по линейности пространства, и в частности, принадлежит . Рассмотрим : , то есть . |
Определение: |
Подпространство в алгебраическом смысле не обязательно замкнуто в исходном пространстве. Поэтому в функциональном анализе собственно подпространством называется именно замкнутое подпространство, а алгебраические подпространства называют линейными подмножествами. |
Теорема: |
Пусть — НП и — линейное конечномерное подмножество в , тогда — замкнуто в , т.е.
. |
Доказательство: |
Пусть для произвольного , --- исходная норма., пусть . По теореме Рисса, нормы и в эквивалентны; в , очевидно, есть покоординатная сходимость.//Возьмем еще одну последовательность , .//Вследствие покоординатной сходимости, .По полноте вещественной оси, все Так как последовательностей сходятся: . и , то и . |
Пример: теореме Вейерштрасса, любую непрерывную на отрезке функцию можно приблизить полиномами.
, — пространство всех полиномов степени не выше . Очевидно, конечномерно, и, по только что доказанной теореме, замкнуто. Значит, если рассмотреть произвольную сходящуюся последовательность полиномов из , то ее пределом будет также полином из . Этот факт, тривиальный с точки зрения функционального анализа, классическими методами математического анализа получается очень непросто. Однако, если степень полиномов в не ограничивать, то замыканием будет все пространство , по