Частично рекурсивные функции — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «== Основные определения == Рассмотрим следующее правило преобразования функций: * Рассмо...»)
 
Строка 2: Строка 2:
 
Рассмотрим следующее правило преобразования функций:
 
Рассмотрим следующее правило преобразования функций:
  
* Рассмотрим <tex> k+1 </tex>-местную функцию <tex> f(x_1,\ldots,x_k,y) </tex>. Тогда после преобразования у нас появится <tex> k </tex> - местная функция <tex> g(x_1,\ldots,x_k) = </tex> минимальное <tex> y </tex> при котором <tex> f(x_1,\ldots,x_k,y) =0 </tex>.  
+
* Рассмотрим <tex> k+1 </tex>-местную функцию <tex> f(x_1,\ldots,x_k,y) </tex>. Тогда после преобразования у нас появится <tex> k </tex> - местная функция <tex> g(x_1,\ldots,x_k) = </tex> минимальное <tex> y </tex> при котором <tex> f(x_1,\ldots,x_k,y) = 0 </tex>.  
: Это правило называется правилом минимизации и часто для него используют обозначения <tex> g(x_1,\ldots,x_k) = \mu y (f(x_1,\ldots,x_k,y) = 0)  
+
: Это правило называется правилом минимизации и часто для него используют обозначения <tex> g(x_1,\ldots,x_k) = \mu y (f(x_1,\ldots,x_k,y) = 0) </tex>
  
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
'''Частично рекурсивными''' называют функции, которые можно получить с помощью правил минимизации, подстановки и рекурсии из константной функции <tex> \textbf 0 </tex>, функции <tex> I(x) = x + 1, </tex> и набора функций <tex> P_{n,k}(x_1,\ldots,x_n) = x_k,</tex> где <tex> k \le n </tex>.
+
'''Частично рекурсивными''' называют функции, которые можно получить с помощью правил минимизации, [[Примитивно рекурсивные функции | подстановки и рекурсии]] из константной функции <tex> \textbf 0 </tex>, функции <tex> I(x) = x + 1, </tex> и набора функций <tex> P_{n,k}(x_1,\ldots,x_n) = x_k,</tex> где <tex> k \le n </tex>.
  
 
}}
 
}}

Версия 02:24, 20 января 2013

Основные определения

Рассмотрим следующее правило преобразования функций:

  • Рассмотрим [math] k+1 [/math]-местную функцию [math] f(x_1,\ldots,x_k,y) [/math]. Тогда после преобразования у нас появится [math] k [/math] - местная функция [math] g(x_1,\ldots,x_k) = [/math] минимальное [math] y [/math] при котором [math] f(x_1,\ldots,x_k,y) = 0 [/math].
Это правило называется правилом минимизации и часто для него используют обозначения [math] g(x_1,\ldots,x_k) = \mu y (f(x_1,\ldots,x_k,y) = 0) [/math]


Определение:
Частично рекурсивными называют функции, которые можно получить с помощью правил минимизации, подстановки и рекурсии из константной функции [math] \textbf 0 [/math], функции [math] I(x) = x + 1, [/math] и набора функций [math] P_{n,k}(x_1,\ldots,x_n) = x_k,[/math] где [math] k \le n [/math].