Тонкая куча — различия между версиями
Genyaz (обсуждение | вклад) (Добавлены ссылки) |
Genyaz (обсуждение | вклад) (decreaseKey) |
||
Строка 6: | Строка 6: | ||
{{Определение | {{Определение | ||
− | |id=thin_tree_def | + | |id=thin_tree_def |
|definition='''Тонкое дерево''' (''thin tree'') <tex>T_k</tex> ранга <tex>k</tex> {{---}} это дерево, которое может быть получено из [[Биномиальная куча#Биномиальное дерево|биномиального дерева]] <tex>B_k</tex> удалением у нескольких внутренних, то есть не являющихся корнем или листом, узлов самого левого сына. | |definition='''Тонкое дерево''' (''thin tree'') <tex>T_k</tex> ранга <tex>k</tex> {{---}} это дерево, которое может быть получено из [[Биномиальная куча#Биномиальное дерево|биномиального дерева]] <tex>B_k</tex> удалением у нескольких внутренних, то есть не являющихся корнем или листом, узлов самого левого сына. | ||
}} | }} | ||
Строка 13: | Строка 13: | ||
{{Утверждение | {{Утверждение | ||
− | |id=about_thin_tree_rank | + | |id=about_thin_tree_rank |
|statement=Ранг тонкого дерева равен количеству детей его корня. | |statement=Ранг тонкого дерева равен количеству детей его корня. | ||
}} | }} | ||
Строка 23: | Строка 23: | ||
== Свойства тонкого дерева == | == Свойства тонкого дерева == | ||
{{Утверждение | {{Утверждение | ||
− | |id=about_thin_tree | + | |id=about_thin_tree |
|statement=Тонкое дерево обладает следующими свойствами: | |statement=Тонкое дерево обладает следующими свойствами: | ||
# Для любого узла <tex>x</tex> либо <tex>Degree(x)=Rank(x)</tex>, в этом случае говорим, что узел <tex>x</tex> не помечен (полный); либо <tex>Degree(x)=Rank(x)-1</tex>, в этом случае говорим, что узел <tex>x</tex> помечен (неполный). | # Для любого узла <tex>x</tex> либо <tex>Degree(x)=Rank(x)</tex>, в этом случае говорим, что узел <tex>x</tex> не помечен (полный); либо <tex>Degree(x)=Rank(x)-1</tex>, в этом случае говорим, что узел <tex>x</tex> помечен (неполный). | ||
Строка 34: | Строка 34: | ||
{{Определение | {{Определение | ||
− | |id=thin_forest_def | + | |id=thin_forest_def |
|definition='''Тонкий лес''' (''thin forest'') {{---}} это набор ''тонких деревьев'', ранги которых не обязательно попарно различны. | |definition='''Тонкий лес''' (''thin forest'') {{---}} это набор ''тонких деревьев'', ранги которых не обязательно попарно различны. | ||
}} | }} | ||
{{Утверждение | {{Утверждение | ||
− | |id=about_thin_forest_with_n_nodes | + | |id=about_thin_forest_with_n_nodes |
|statement=Для любого натурального числа <tex>n</tex> существует тонкий лес, который содержит ровно <tex>n</tex> элементов и состоит из тонких деревьев попарно различных рангов. | |statement=Для любого натурального числа <tex>n</tex> существует тонкий лес, который содержит ровно <tex>n</tex> элементов и состоит из тонких деревьев попарно различных рангов. | ||
|proof=Действительно, любой [[Биномиальная куча#Биномиальное дерево|биномиальный]] лес является тонким, а для [[Биномиальная куча#Биномиальное дерево|биномиального]] леса рассматриваемое утверждение справедливо. | |proof=Действительно, любой [[Биномиальная куча#Биномиальное дерево|биномиальный]] лес является тонким, а для [[Биномиальная куча#Биномиальное дерево|биномиального]] леса рассматриваемое утверждение справедливо. | ||
Строка 45: | Строка 45: | ||
{{Определение | {{Определение | ||
− | |id=thin_heap_def | + | |id=thin_heap_def |
|definition='''Тонкая куча''' (''thin heap'') {{---}} это [[Двоичная куча|кучеобразно]] нагруженный ''тонкий лес''. | |definition='''Тонкая куча''' (''thin heap'') {{---}} это [[Двоичная куча|кучеобразно]] нагруженный ''тонкий лес''. | ||
}} | }} | ||
Строка 52: | Строка 52: | ||
{{Теорема | {{Теорема | ||
− | |id=max_rank_th | + | |id=max_rank_th |
|about=О максимальном ранге узла | |about=О максимальном ранге узла | ||
|statement=В тонкой куче из <tex>n</tex> элементов <tex>D(n) \leqslant \log_{\Phi} n</tex>, где <tex dpi = "180">\Phi=\frac{1+\sqrt{5}}{2}</tex> {{---}} золотое сечение. | |statement=В тонкой куче из <tex>n</tex> элементов <tex>D(n) \leqslant \log_{\Phi} n</tex>, где <tex dpi = "180">\Phi=\frac{1+\sqrt{5}}{2}</tex> {{---}} золотое сечение. | ||
Строка 61: | Строка 61: | ||
<tex>T_0=1,T_1=1,T_k \geqslant 1+\sum_{i=0}^{k-2}T_i</tex> для <tex>k \geqslant 2</tex> | <tex>T_0=1,T_1=1,T_k \geqslant 1+\sum_{i=0}^{k-2}T_i</tex> для <tex>k \geqslant 2</tex> | ||
− | Числа Фибоначчи удовлетворяют этому же рекуррентному соотношению, причем неравенство можно заменить равенством. Отсюда по индукции следует, что <tex>T_k \geqslant F_k</tex> для любых <tex>k</tex>. Неравенство <tex>F_k \geqslant \Phi^{k-1}</tex> хорошо известно. | + | Числа Фибоначчи удовлетворяют этому же рекуррентному соотношению, причем неравенство можно заменить равенством. Отсюда по индукции следует, что <tex>T_k \geqslant F_k</tex> для любых <tex>k</tex>. Неравенство <tex>F_k \geqslant \Phi^{k-1}</tex> [[Фибоначчиева куча#Лемма3|хорошо известно]]. |
− | Теперь убедимся в том, что максимально возможный ранг <tex>D(n)</tex> ''тонкого дерева'' в тонкой куче, содержащей <tex>n</tex> элементов, не превосходит числа <tex>\log_{\Phi}(n)+1</tex>. Действительно, выберем в тонкой куче дерево максимального ранга. Пусть <tex>n^*</tex> {{---}} количество вершин в этом дереве, тогда <tex>n \geqslant n^* \geqslant \Phi^{D(n)-1}</tex>. | + | Теперь убедимся в том, что максимально возможный ранг <tex>D(n)</tex> ''тонкого дерева'' в тонкой куче, содержащей <tex>n</tex> элементов, не превосходит числа <tex>\log_{\Phi}(n)+1</tex>. |
+ | |||
+ | Действительно, выберем в тонкой куче дерево максимального ранга. Пусть <tex>n^*</tex> {{---}} количество вершин в этом дереве, тогда <tex>n \geqslant n^* \geqslant \Phi^{D(n)-1}</tex>. | ||
Отсюда следует, что <tex>D(n)\leqslant\log_{\Phi}(n)+1</tex>. | Отсюда следует, что <tex>D(n)\leqslant\log_{\Phi}(n)+1</tex>. | ||
Строка 120: | Строка 122: | ||
{{Утверждение | {{Утверждение | ||
− | |id=about_thin_heap_potential | + | |id=about_thin_heap_potential |
|statement=Определённый таким образом потенциал обладает свойствами: | |statement=Определённый таким образом потенциал обладает свойствами: | ||
# <tex>\Phi \geqslant 0</tex>. | # <tex>\Phi \geqslant 0</tex>. | ||
Строка 171: | Строка 173: | ||
=== decreaseKey === | === decreaseKey === | ||
− | + | После уменьшения ключа может быть нарушена [[Двоичная куча|кучеобразность]], в этом случае мы переносим все поддерево с корнем в уменьшаемом элементе в корневой список, также обновляем минимум в тонкой куче. | |
+ | |||
+ | Теперь могут быть нарушены свойства тонкого дерева, будем различать два вида нарушений: | ||
+ | * Братские нарушения {{---}} это нарушения [[Тонкая куча#about_thin_tree|третьего свойства]] тонкого дерева. | ||
+ | * Родительские нарушения {{---}} это нарушения [[Тонкая куча#about_thin_tree|первого или второго свойства]] тонкого дерева. | ||
+ | |||
+ | Назовем узел <tex>y</tex> узлом локализации братского нарушения среди детей узла <tex>z</tex>, если ранг узла <tex>y</tex> отличается от ранга его ближайшего правого брата на 2, либо он не имеет правого брата и его ранг равен 1. | ||
+ | |||
+ | Назовем узел <tex>y</tex> узлом локализации родительского нарушения, если выполнено одно из трех условий: | ||
+ | # Ранг узла <tex>y</tex> на три больше, чем ранг его самого левого сына. | ||
+ | # Ранг узла <tex>y</tex> равен двум, и он не имеет детей. | ||
+ | # Узел <tex>y</tex> есть помеченный корень дерева. | ||
+ | |||
+ | Пусть узел <tex>y</tex> — это узел локализации братского нарушения. | ||
+ | # Узел <tex>y</tex> не помечен, тогда помещаем поддерево с корнем в самом левом сыне узла <tex>y</tex> на место пропущенного в братском списке. Узел <tex>y</tex> становится помеченным, дерево становится корректным, процедура исправления завершается. | ||
+ | # Узел <tex>y</tex> помечен, тогда уменьшаем ранг узла <tex>y</tex> на единицу. Теперь узлом локализации нарушения будет либо левый брат узла <tex>y</tex>, либо его родитель, тогда нарушение станет родительским. | ||
+ | |||
+ | С помощью этих действий мы избавились от братских нарушений, теперь разберем родительские. | ||
+ | |||
+ | Пусть узел <tex>y</tex> — это узел локализации родительского нарушения, а узел <tex>z</tex> — родитель узла <tex>y</tex>. | ||
+ | |||
+ | Переместим все поддерево с корнем в <tex>y</tex> в корневой список и уменьшим ранг <tex>y</tex>. Если узел <tex>z</tex> не был помечен, то дерево станет корректным, иначе <tex>z</tex> {{---}} новый узел локализации родительского нарушения. | ||
+ | |||
+ | Продолжая эту процедуру, мы или остановимся, или дойдем до корня дерева, тогда достаточно сделать ранг корня на 1 больше ранга его самого левого сына. | ||
+ | |||
+ | Каждый промежуточный шаг рекурсии уменьшает количество помеченных узлов на 1 и добавляет не более одного дерева в корневой список, тогда на каждом промежуточном шаге потенциал уменьшается минимум на 1, отсюда амортизированная стоимость <tex>O(1)</tex>. | ||
Стоимость <tex>O(1)</tex>. | Стоимость <tex>O(1)</tex>. | ||
Строка 184: | Строка 211: | ||
* [http://www.intuit.ru/studies/courses/100/100/lecture/1542 Тонкие кучи — INTUIT.ru] | * [http://www.intuit.ru/studies/courses/100/100/lecture/1542 Тонкие кучи — INTUIT.ru] | ||
* [http://dl.acm.org/citation.cfm?id=1328914 ''Каплан Х.'', ''Тарьян А. Р..'', Thin Heaps, Thick Heaps // ACM Transactions on Algorithms. {{---}} 2008. {{---}} Т.4. {{---}} №1. {{---}} C. 1{{---}}14. {{---}} ISSN: 1549-6325] | * [http://dl.acm.org/citation.cfm?id=1328914 ''Каплан Х.'', ''Тарьян А. Р..'', Thin Heaps, Thick Heaps // ACM Transactions on Algorithms. {{---}} 2008. {{---}} Т.4. {{---}} №1. {{---}} C. 1{{---}}14. {{---}} ISSN: 1549-6325] | ||
+ | * [http://www.lektorium.tv/lecture/?id=14233 ''Станкевич А. С.'', Дополнительные главы алгоритмов, лекция 1 {{---}} Лекториум] | ||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Приоритетные очереди]] | [[Категория: Приоритетные очереди]] |
Версия 09:08, 26 мая 2013
Тонкая куча — это структура данных, реализующая приоритетную очередь с теми же асимптотическими оценками, что и фибоначчиева куча, но имеющая большую практическую ценность из-за меньших констант.
Тонкие кучи, как и многие другие кучеобразные структуры, аналогичны биномиальным кучам.
Содержание
Тонкое дерево
Определение: |
Тонкое дерево (thin tree) биномиального дерева удалением у нескольких внутренних, то есть не являющихся корнем или листом, узлов самого левого сына. | ранга — это дерево, которое может быть получено из
Ограничение на принадлежность внутренним узлам вызвано тем, что у листьев детей нет, а если у корня удалить самого левого сына, то превратится в .
Утверждение: |
Ранг тонкого дерева равен количеству детей его корня. |
Для любого узла
в дереве обозначим:- — количество детей узла .
- биномиальном дереве . — ранг соответствующего узла в
Свойства тонкого дерева
Утверждение: |
Тонкое дерево обладает следующими свойствами:
|
Тонкая куча
Определение: |
Тонкий лес (thin forest) — это набор тонких деревьев, ранги которых не обязательно попарно различны. |
Утверждение: |
Для любого натурального числа существует тонкий лес, который содержит ровно элементов и состоит из тонких деревьев попарно различных рангов. |
Действительно, любой биномиальный лес является тонким, а для биномиального леса рассматриваемое утверждение справедливо. |
Определение: |
Тонкая куча (thin heap) — это кучеобразно нагруженный тонкий лес. |
Пусть — максимально возможный ранг узла в тонкой куче, содержащей элементов.
Теорема (О максимальном ранге узла): |
В тонкой куче из элементов , где — золотое сечение. |
Доказательство: |
Сначала покажем, что узел ранга в тонком дереве имеет не менее потомков, включая самого себя, где — -е число Фибоначчи, определяемое соотношениями , , для .Действительно, пусть — минимально возможное число узлов, включая самого себя, в тонком дереве ранга . По свойствам и тонкого дерева получаем следующие соотношения:для Числа Фибоначчи удовлетворяют этому же рекуррентному соотношению, причем неравенство можно заменить равенством. Отсюда по индукции следует, что хорошо известно. для любых . НеравенствоТеперь убедимся в том, что максимально возможный ранг тонкого дерева в тонкой куче, содержащей элементов, не превосходит числа .Действительно, выберем в тонкой куче дерево максимального ранга. Пусть Отсюда следует, что — количество вершин в этом дереве, тогда . . |
Представление тонкой кучи
Тонкую кучу можно представить как односвязный список корней тонких деревьев, причем корень с минимальным ключом должен быть первым в списке.
Поскольку при работе с тонкой кучей ссылка на родителя требуется только у самого левого его ребенка, можно хранить ее вместо ссылки на левого брата этой вершины.
Таким образом, для эффективной работы тонкой кучи необходимы следующие поля узла:
- — ключ (вес) элемента;
- — указатель на самого левого ребенка узла;
- — указатель на правого брата узла, либо на следующий корень, если текущий узел корень;
- — указатель на левого брата узла, либо на родителя, если текущий узел самый левый, либо null, если это корень;
- — ранг узла (количество дочерних узлов данного узла).
Для ускорения проверки на тонкость (thinness) можно отдельно хранить помеченность вершины. Также в вершине можно хранить любую дополнительную информацию.
Для работы с тонкой кучей достаточно иметь односвязный список ее корней.
Операции над тонкой кучей
Рассмотрим операции, которые можно производить над тонкой кучей. Время работы указано в таблице:
Многие операции над тонкой кучей выполняются так же, как и над фиббоначиевой.
Для амортизационного анализа операций применим метод потенциалов.
Пусть функция потенциала определена как
где — это количество тонких деревьев в куче, а — это количество помеченных вершин.Утверждение: |
Определённый таким образом потенциал обладает свойствами:
|
makeHeap
Для создания новой пустой тонкой кучи нужно вернуть ссылку на новый пустой корневой список, его потенциал
.Стоимость
.insert
Для вставки элемента в тонкую кучу нужно создать новое тонкое дерево из единственного узла с ключом
, добавить его в корневой список на первое место, если этот ключ минимален, иначе на второе. Потенциал увеличивается на 1.Стоимость
.getMin
Для обращения к минимальному элементу в тонкой куче нужно обратиться к первому корневому узлу списка и вернуть его ключ, потенциал
не меняется.Стоимость
.meld
Для объединения тонких куч нужно слить их корневые списки, ставя первым тот список, у которого ключ первого корня минимален. Суммарный потенциал
не меняется.Стоимость
.extractMin
Чтобы извлечь минимальный элемент из тонкой кучи нужно:
- Удалить корень с минимальным ключом из корневого списка.
- Уменьшить ранг для всех его помеченных детей.
- Cлить детей с корневым списком.
- Объединять, пока возможно, тонкие деревья одного ранга.
Это можно сделать, например, с помощью вспомогательного массива размером
, в -ой ячейке которого хранится корень тонкого дерева ранга .Изначально массив пуст, а мы добавляем в него все деревья нашего корневого списка.
При добавлении нового дерева мы, если дерево такого ранга уже есть в массиве, связываем его с существующим и пытаемся добавить новое дерево с рангом на
больше.Пусть мы сделали
связывающих шагов (linking steps) во время добавления в массив.Мы удалили корень из списка за
, затем за нормализовали детей корня и добавили в корневой список, далее за получили новый корневой список, в котором за нашли минимальный корень и подвесили список за него.Получили фактическую стоимость
. С другой стороны, при добавлении детей в список мы увеличили потенциал не более чем на , а каждый связывающий шаг уменьшает наш потенциал на .Cтоимость
.decreaseKey
После уменьшения ключа может быть нарушена кучеобразность, в этом случае мы переносим все поддерево с корнем в уменьшаемом элементе в корневой список, также обновляем минимум в тонкой куче.
Теперь могут быть нарушены свойства тонкого дерева, будем различать два вида нарушений:
- Братские нарушения — это нарушения третьего свойства тонкого дерева.
- Родительские нарушения — это нарушения первого или второго свойства тонкого дерева.
Назовем узел
узлом локализации братского нарушения среди детей узла , если ранг узла отличается от ранга его ближайшего правого брата на 2, либо он не имеет правого брата и его ранг равен 1.Назовем узел
узлом локализации родительского нарушения, если выполнено одно из трех условий:- Ранг узла на три больше, чем ранг его самого левого сына.
- Ранг узла равен двум, и он не имеет детей.
- Узел есть помеченный корень дерева.
Пусть узел
— это узел локализации братского нарушения.- Узел не помечен, тогда помещаем поддерево с корнем в самом левом сыне узла на место пропущенного в братском списке. Узел становится помеченным, дерево становится корректным, процедура исправления завершается.
- Узел помечен, тогда уменьшаем ранг узла на единицу. Теперь узлом локализации нарушения будет либо левый брат узла , либо его родитель, тогда нарушение станет родительским.
С помощью этих действий мы избавились от братских нарушений, теперь разберем родительские.
Пусть узел
— это узел локализации родительского нарушения, а узел — родитель узла .Переместим все поддерево с корнем в
в корневой список и уменьшим ранг . Если узел не был помечен, то дерево станет корректным, иначе — новый узел локализации родительского нарушения.Продолжая эту процедуру, мы или остановимся, или дойдем до корня дерева, тогда достаточно сделать ранг корня на 1 больше ранга его самого левого сына.
Каждый промежуточный шаг рекурсии уменьшает количество помеченных узлов на 1 и добавляет не более одного дерева в корневой список, тогда на каждом промежуточном шаге потенциал уменьшается минимум на 1, отсюда амортизированная стоимость
.Стоимость
.delete
Чтобы удалить элемент из тонкой кучи нужно сначала выполнить
этого элемента до , а затем выполнить .Стоимость
.