Участник:SkudarnovYaroslav/Теормин к зачёту по теории сложности — различия между версиями
(запилил что-то) |
(Определения всё) |
||
Строка 74: | Строка 74: | ||
== PS-полная задача == | == PS-полная задача == | ||
Видимо, [[Участник:SkudarnovYaroslav/Теормин к зачёту по теории сложности#Видимо, это про NP-полные задачи|тут]]. | Видимо, [[Участник:SkudarnovYaroslav/Теормин к зачёту по теории сложности#Видимо, это про NP-полные задачи|тут]]. | ||
+ | |||
+ | == Класс L == | ||
+ | {{Определение | ||
+ | |definition='''Класс <tex>\mathrm{L}</tex>''' — множество языков, разрешимых на детерминированной машине Тьюринга с использованием <tex>O(\log n)</tex> дополнительной памяти для входа длиной <tex>n</tex>. | ||
+ | <tex>\mathrm{L} = \mathrm{DSPACE}(\log n)</tex>. | ||
+ | }} | ||
+ | |||
+ | == Класс NL == | ||
+ | {{Определение | ||
+ | |definition='''Класс <tex>\mathrm{NL}</tex>''' — множество языков, разрешимых на недетерминированной машине Тьюринга с использованием <tex>O(\log n)</tex> дополнительной памяти для входа длиной <tex>n</tex>. | ||
+ | <tex>\mathrm{NL} = \mathrm{NSPACE}(\log n)</tex>. | ||
+ | }} | ||
+ | |||
+ | == NL-полная задача == | ||
+ | Опять же, [[Участник:SkudarnovYaroslav/Теормин к зачёту по теории сложности#Видимо, это про NP-полные задачи|тут]]. | ||
+ | |||
+ | == Класс P/poly == | ||
+ | {{Определение | ||
+ | |definition= | ||
+ | <tex> \mathrm{PSIZE} </tex> {{---}} класс языков, разрешимых семейством [[Реализация_булевой_функции_схемой_из_функциональных_элементов|логических схем]] <tex> \{C_n\}_{n>0} </tex> полиномиального размера с n входами и одним выходом. | ||
+ | |||
+ | <tex> \mathrm{PSIZE} =\{L \bigm| \forall n </tex> <tex> \exists C_n </tex>: | ||
+ | #<tex> |C_n| \leqslant p(n)</tex>, где <tex> p </tex> {{---}} полином; | ||
+ | #Число входов в схеме <tex> C_n </tex> равно <tex> n </tex>; | ||
+ | #Каждая схема <tex> C_n </tex> имеет один выход; | ||
+ | #<tex>x \in L \Leftrightarrow C_{|x|}(x) = 1 \}</tex>. | ||
+ | }} | ||
+ | |||
+ | {{Определение | ||
+ | |definition= | ||
+ | Пусть <tex> \mathrm{C} </tex> {{---}} сложностный класс, <tex> f </tex> {{---}} функция. Тогда <tex> \mathrm{C}/f = \{L \bigm| </tex> существуют подсказки <tex> a_0, a_1, \ldots , a_n, \ldots </tex> и программа <tex> p </tex>, удовлетворяющая ограничениям <tex> \mathrm{C} </tex>: | ||
+ | #<tex>|a_i| \leqslant f(i) </tex>; | ||
+ | #<tex> x \in L \Leftrightarrow p(x, a_{|x|})=1 \}</tex>. | ||
+ | }} | ||
+ | |||
+ | {{Определение | ||
+ | |definition= | ||
+ | <tex> \mathrm{P/poly} = \bigcup\limits_{p \in poly} \mathrm{P}/p </tex>. | ||
+ | }} | ||
+ | |||
+ | == Вероятностные вычисления (неформальненько как-то, ну да ладно) == | ||
+ | '''Вероятностные вычисления''' — один из подходов в теории вычислительной сложности, в котором программы получают доступ, говоря неформально, к генератору случайных чисел. Мы рассмотрим классы сложности, для которых программы могут работать за полиномиальное время и делать односторонние, двусторонние ошибки или работать за полиномиальное время лишь в среднем случае. | ||
+ | |||
+ | {{Определение | ||
+ | |definition = | ||
+ | '''Вероятностная лента''' — бесконечная в одну сторону последовательность битов, распределение которых подчиняется некоторому вероятностному закону (обычно считают, что биты в различных позициях независимы и вероятность нахождения <tex>0</tex> или <tex>1</tex> в каждой позиции равна <tex>1/2</tex>). | ||
+ | }} | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | '''Вероятностная машина Тьюринга''' (ВМТ) — детерминированная машина Тьюринга, имеющая вероятностную ленту. Переходы в ВМТ могут осуществляться с учетом информации, считанной с вероятностной ленты. | ||
+ | }} | ||
+ | |||
+ | Используя тезис Черча-Тьюринга, ВМТ можно сопоставить программы, имеющие доступ к случайным битам. Обращение к очередному биту можно трактовать как вызов специальной функции ''random''(). При этом также будем предполагать, что вероятностная лента является неявным аргументом программы или ВМТ, т.е. <tex>p(x) = p(x, r)</tex>, где <tex>r</tex> — вероятностная лента. | ||
+ | |||
+ | == Класс BPP == | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | <tex>\mathrm{BPP}</tex> (от ''bounded probabilistic polynomial'') — множество языков <tex>L</tex>, для которых существует такая [[Вероятностные вычисления. Вероятностная машина Тьюринга |ВМТ]] <tex>p</tex>, что для любого <tex>x</tex>: | ||
+ | # <tex>P(p(x) = [x \in L]) \ge 2/3</tex>; | ||
+ | # <tex>T(p, x) \le poly(|x|)</tex> для любой [[Вероятностные вычисления. Вероятностная машина Тьюринга |вероятностной ленты]]. | ||
+ | }} | ||
+ | <tex>\mathrm{BPP}</tex> — сложностный класс, допускающий двусторонние ошибки. | ||
+ | Константу <tex>2/3</tex> можно заменить на любое число из промежутка <tex>(1/2, 1)</tex>, так как требуемой вероятности можно добиться множественным запуском <tex>p</tex>. Замена константы на <tex>1/2</tex> сделала бы данный класс равным <tex>\Sigma^*</tex> (программа, возвращающая результат функции ''random''(), подошла бы для любого языка). | ||
+ | |||
+ | == Класс RP == | ||
+ | {{Определение | ||
+ | |definition= | ||
+ | Сложностный класс <tex>\mathrm{RP}</tex> состоит из языков <tex>L</tex> таких, что существует [[Вероятностные вычисления. Вероятностная машина Тьюринга|ВМТ]] <tex>m</tex> такая, что для любого <tex>x</tex>: | ||
+ | # <tex>x \notin L \Rightarrow P(m(x) = 0) = 1</tex>; | ||
+ | # <tex>x \in L \Rightarrow P(m(x) = 1) \geq \frac{1}{2}</tex>; | ||
+ | # <tex>T(m(x, r)) \le poly(|x|)</tex> для любой вероятностной ленты <tex>r</tex>. | ||
+ | }} | ||
+ | <tex>\mathrm{RP}</tex> — сложностный класс, допускающий ошибки программ на словах из <tex>L</tex>. | ||
+ | Заметим, что константа <tex>1/2</tex> в пункте 2 определения <tex>\mathrm{RP}</tex> может быть заменена на любую другую из промежутка <tex>(0, 1)</tex>, поскольку требуемой вероятности можно добиться множественным запуском программы. | ||
+ | |||
+ | <tex>\mathrm{RP}</tex> можно рассматривать как вероятностный аналог класса <tex>\mathrm{NP}</tex>, предполагая, что вероятность угадать сертификат в случае его существования не менее <tex>1/2</tex>. | ||
+ | |||
+ | == Класс ZPP == | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | <tex>\mathrm{ZPP}</tex> (от ''zero-error probabilistic polynomial'') — множество языков <tex>L</tex>, для которых <tex>\exists p \forall x</tex>: | ||
+ | # <tex>\operatorname{P}(p(x) \ne [x \in L]) = 0</tex>;<br> | ||
+ | # <tex>\operatorname{E}[\operatorname{T}(p, x)] = poly(|x|)</tex>.<br> | ||
+ | }} | ||
+ | <tex>\mathrm{ZPP}</tex> — сложностный класс, такой что программы, удовлетворяющие его ограничениям, не могут делать ошибок, но работают за полиномиальное время только в среднем случае. | ||
+ | |||
+ | Напомним, что математическое ожидание является усреднением по вероятностным лентам, а не по входу <tex>x</tex>. | ||
+ | |||
+ | == Интерактивное доказательство (кажется, оно, но не уверен) == | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | <b>Интерактивным протоколом</b>, разрешающим язык <tex>L</tex>, называется абстрактная машина (см. рисунок), моделирующая вычисления как обмен сообщениями между двумя программами (<tex>\mathit{Prover}</tex> и <tex>\mathit{Verifier}</tex>), такими, что | ||
+ | # <tex>\mathit{Prover}</tex> заинтересован в том, чтобы <tex>\mathit{Verifier}</tex> решил, что слово <tex>x</tex> принадлежит языку; | ||
+ | # <tex>\mathit{Prover}</tex> не ограничен в вычислительной мощности; | ||
+ | # <tex>\mathit{Verifier}</tex> заинтересован установить, действительно ли слово <tex>x</tex> принадлежит языку; | ||
+ | # <tex>\mathit{Verifier}</tex> — [[Вероятностные вычисления. Вероятностная машина Тьюринга|вероятностная машина Тьюринга]]; | ||
+ | # <tex>\mathit{Verifier}</tex> ограничен полиномиальным временем работы. | ||
+ | }} | ||
+ | [[Файл:IPS.png|250px|thumb|right|Схема интерактивного протокола.]] | ||
+ | |||
+ | <tex>\mathit{Verifier}</tex>, обменивающийся сообщениями с <tex>\mathit{Prover}</tex>, будем обозначать <tex>\mathit{Verifier^{Prover}}</tex>. | ||
+ | |||
+ | Интерактивные протоколы делятся на два типа в зависимости от доступа <tex>\mathit{Prover}</tex> к вероятностной ленте <tex>\mathit{Verifier}</tex>: | ||
+ | # <b> public coins </b> — <tex>\mathit{Prover}</tex> может видеть вероятностную ленту <tex>\mathit{Verifier}</tex>; | ||
+ | # <b> private coins </b> — <tex>\mathit{Prover}</tex> <b>не</b> может видеть вероятностную ленту <tex>\mathit{Verifier}</tex>. | ||
+ | |||
+ | == Класс IP == | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | <tex>\mathrm{IP}[f] = \{L\bigm|\exists \langle \mathit{Verifier}, \mathit{Prover} \rangle : </tex> <br/> | ||
+ | # <tex>\mathit{Prover}</tex> не имеет доступа к вероятностной ленте <tex>\mathit{Verifier}</tex> (private coins); | ||
+ | # <tex> \forall x \in L \Rightarrow P(\mathit{Verifier^{Prover}}(x) = 1) \ge \frac{2}{3} </tex>;<br/> | ||
+ | # <tex> \forall x \notin L \Rightarrow P(\mathit{Verifier^{Prover}}(x) = 1) \le \frac{1}{3} </tex>;<br/> | ||
+ | # число раундов интерактивного протокола <tex> O(f(n)), n = |x|\}</tex>.<br/> | ||
+ | }} | ||
+ | {{Определение | ||
+ | |definition = <tex>\mathrm{IP}=\bigcup\limits_{p(n) \in poly} \mathrm{IP} [p(n)] </tex> | ||
+ | }} | ||
+ | |||
+ | == Класс AM == | ||
+ | Язык <tex>\mathrm{AM}</tex> (<i>Arthur–Merlin games</i>) отличается от <tex>\mathrm{IP}</tex> лишь тем, что <tex>\mathit{Prover}</tex> может видеть вероятностную ленту <tex>\mathit{Verifier}</tex>. | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | <tex>\mathrm{AM}[f] = \{L\bigm|\exists \langle \mathit{Verifier}, \mathit{Prover} \rangle : </tex> <br/> | ||
+ | # <tex>\mathit{Prover}</tex> может читать вероятностную ленту <tex>\mathit{Verifier}</tex> (public coins); | ||
+ | # <tex> \forall x \in L \Rightarrow P(\mathit{Verifier^{Prover}}(x) = 1) \ge \frac{2}{3} </tex>;<br/> | ||
+ | # <tex> \forall x \notin L \Rightarrow P(\mathit{Verifier^{Prover}}(x) = 1) \le \frac{1}{3} </tex>;<br/> | ||
+ | # число раундов интерактивного протокола <tex> O(f(n)), n = |x|\} </tex>.<br/> | ||
+ | }} | ||
+ | {{Определение | ||
+ | |definition = <tex>\mathrm{AM}=\bigcup\limits_{p(n) \in poly} \mathrm{AM} [p(n)] </tex> | ||
+ | }} | ||
+ | |||
+ | == Класс PCP == | ||
+ | '''PCP(probabilistically checkable proof)''' - вид доказательства, проверяемого рандомизированным алгоритмом, использующим ограниченное число случайных бит и читающим ограниченное число бит доказательства. Такой алгоритм должен с достаточно высокими вероятностями принимать корректные доказательства и отвергать ошибочные. | ||
+ | |||
+ | {{Определение | ||
+ | |definition = | ||
+ | <tex>\mathrm{PCP}</tex>'''-системой''' (системой вероятностно проверяемых доказательств) с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex> над алфавитом <tex>\Sigma</tex> для языка <tex>L</tex>, где <tex>0 \le s(n) \le c(n) \le 1</tex>, называется верификатор <tex>V</tex> {{---}} [[Вероятностные вычисления. Вероятностная машина Тьюринга#Основные определения|вероятностная машина Тьюринга]], имеющая доступ к доказательству <tex>\pi</tex> {{---}} цепочке из <tex>\Sigma^{*}</tex>, удовлетворяющая следующим свойствам: | ||
+ | * '''Полнота''': если <tex>x \in L</tex>, то вероятность того, что <tex>V^{\pi}</tex> допустит <tex>x</tex>, не меньше <tex>c(n)</tex> для некоторого <tex>\pi</tex>, | ||
+ | * '''Обоснованность''': если <tex>x \notin L</tex>, то вероятность того, что <tex>V^{\pi}</tex> допустит <tex>x</tex>, не больше <tex>s(n)</tex> для любого <tex>\pi</tex>. | ||
+ | }} | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | '''Randomness complexity''' (вероятностной сложностью) <tex>r(n)</tex> верификатора <tex>V</tex> называется число случайных битов, используемых за всё время работы со входом длины <tex>n</tex>. | ||
+ | }} | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | '''Query complexity''' (запросной сложностью) <tex>q(n)</tex> верификатора <tex>V</tex> называется число запросов битов из <tex>\pi</tex>, отсылаемых за всё время работы со входом длины <tex>n</tex>. | ||
+ | }} | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | Верификатор <tex>V</tex> называется '''non-adaptive''' (неадаптивным), если при отправке запроса не использует ответы на предыдущие. Иными словами, его работа не изменится, если все запросы отправить одновременно. | ||
+ | }} | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | Сложностный класс <tex>\mathrm{PCP}_{c(n), s(n)}[r(n), q(n)]</tex> {{---}} это объединение всех языков, для которых существует <tex>\mathrm{PCP}</tex>-система над бинарным алфавитом с полнотой <tex>c(n)</tex> и обоснованностью <tex>s(n)</tex>, в которой неадаптивный верификатор <tex>V</tex> работает за полиномиальное время и имеет вероятностную и запросную сложности соответственно <tex>r(n)</tex> и <tex>q(n)</tex>, а доказательства имеют экспоненциальную длину.<br/> | ||
+ | Часто <tex>\mathrm{PCP}_{1, \frac{1}{2}}[r(n), q(n)]</tex> обозначают как <tex>\mathrm{PCP}[r(n), q(n)]</tex>. | ||
+ | }} |
Версия 15:04, 4 июня 2013
Содержание
- 1 Класс P
- 2 Класс NP на языке недетерминированных машин и на языке сертификатов
- 3 Сведение по Карпу
- 4 Видимо, это про NP-полные задачи
- 5 Класс coNP
- 6 Вычисление с оракулом
- 7 Класс PS
- 8 PS-полная задача
- 9 Класс L
- 10 Класс NL
- 11 NL-полная задача
- 12 Класс P/poly
- 13 Вероятностные вычисления (неформальненько как-то, ну да ладно)
- 14 Класс BPP
- 15 Класс RP
- 16 Класс ZPP
- 17 Интерактивное доказательство (кажется, оно, но не уверен)
- 18 Класс IP
- 19 Класс AM
- 20 Класс PCP
Класс P
Определение: |
Класс | — класс языков (задач), разрешимых на детерминированной машине Тьюринга за полиномиальное время, то есть: .
Итого, язык лежит в классе тогда и только тогда, когда существует такая детерминированная машина Тьюринга , что:
- завершает свою работу за полиномиальное время на любых входных данных;
- если на вход машине подать слово , то она допустит его;
- если на вход машине подать слово , то она не допустит его.
Класс NP на языке недетерминированных машин и на языке сертификатов
Определение: |
. |
То есть
— это множество языков, разрешимых недетерминированной программой за полиномиальное время.
Определение: |
. |
Нестрого говоря, — это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор , а для каждого слова из языка (и только для слова из языка) можно предъявить сертификат полиномиальной длины, подтверждающий принадлежность слова языку и проверяемый верификатором.
Сведение по Карпу
Определение: |
— класс языков, распознаваемых программами с некоторыми ограничениями. Тогда обозначим класс вычислимых функций, вычисляемых программами с теми же ограничениями. |
Определение: |
Язык . | -сводится по Карпу к языку ( ), если существует такая функция из , что принадлежит тогда и только тогда, когда принадлежит :
Видимо, это про NP-полные задачи
Определение: |
— -hard . | — сложностный класс, — класс вычислимых функций. Язык называется -трудным относительно -сведения ( -hard), если любой язык из -сводится к :
Определение: |
— сложностный класс, — класс вычислимых функций. Язык называется -полным относительно -сведения ( -complete), если является -трудным относительно -сведения и сам лежит в . |
Замечание. Часто используется сведение из
, поэтому вместо « -сводится по Карпу» говорят просто «сводится». Также индекс у символа сведения обычно опускают.Класс
-полных языков — . является одним из важнейших классов в теории сложности, так как если найдется язык из этого класса, который также входит в класс , тогда окажется, что .Класс coNP
В теории сложности класс co-NP — класс языков (задач), дополнение к которым лежит в NP.
co-NP = Полиномиальная иерархия)
(См.Вычисление с оракулом
В теории вычислений и теории сложности "машиной с оракулом" называют абстрактную машину, предназначенную для решения какой-либо проблемы разрешимости. Такая машина может быть представлена как машина Тьюринга, дополненная оракулом с неизвестным внутренним устройством. Постулируется, что оракул способен решить определенные проблемы разрешимости за один такт машины Тьюринга. Машина Тьюринга взаимодействует с оракулом путем записи на свою ленту входных данных для оракула и затем его запуском на исполнение. За один шаг оракул вычисляет функцию, стирает входные данные и пишет выходные данные на ленту. Иногда машина Тьюринга описывается как имеющая две ленты, одна предназначена для входных данных оракула, другая — для выходных.
Определение: |
Оракул — абстракция, вычисляющая за | времени, верно ли, что принадлежит множеству .
Сложностный класс задач, решаемых алгоритмом из класса
с оракулом для языка , обозначают .Класс PS
Определение: |
. | — класс языков, разрешимых на детерминированной машине Тьюринга с использованием памяти полиномиального размера.
Если
— множество языков, то .PS-полная задача
Видимо, тут.
Класс L
Определение: |
Класс | — множество языков, разрешимых на детерминированной машине Тьюринга с использованием дополнительной памяти для входа длиной . .
Класс NL
Определение: |
Класс | — множество языков, разрешимых на недетерминированной машине Тьюринга с использованием дополнительной памяти для входа длиной . .
NL-полная задача
Опять же, тут.
Класс P/poly
Определение: |
логических схем полиномиального размера с n входами и одним выходом.
:
| — класс языков, разрешимых семейством
Определение: |
Пусть
| — сложностный класс, — функция. Тогда существуют подсказки и программа , удовлетворяющая ограничениям :
Определение: |
. |
Вероятностные вычисления (неформальненько как-то, ну да ладно)
Вероятностные вычисления — один из подходов в теории вычислительной сложности, в котором программы получают доступ, говоря неформально, к генератору случайных чисел. Мы рассмотрим классы сложности, для которых программы могут работать за полиномиальное время и делать односторонние, двусторонние ошибки или работать за полиномиальное время лишь в среднем случае.
Определение: |
Вероятностная лента — бесконечная в одну сторону последовательность битов, распределение которых подчиняется некоторому вероятностному закону (обычно считают, что биты в различных позициях независимы и вероятность нахождения | или в каждой позиции равна ).
Определение: |
Вероятностная машина Тьюринга (ВМТ) — детерминированная машина Тьюринга, имеющая вероятностную ленту. Переходы в ВМТ могут осуществляться с учетом информации, считанной с вероятностной ленты. |
Используя тезис Черча-Тьюринга, ВМТ можно сопоставить программы, имеющие доступ к случайным битам. Обращение к очередному биту можно трактовать как вызов специальной функции random(). При этом также будем предполагать, что вероятностная лента является неявным аргументом программы или ВМТ, т.е. , где — вероятностная лента.
Класс BPP
Определение: |
ВМТ , что для любого :
| (от bounded probabilistic polynomial) — множество языков , для которых существует такая
— сложностный класс, допускающий двусторонние ошибки. Константу можно заменить на любое число из промежутка , так как требуемой вероятности можно добиться множественным запуском . Замена константы на сделала бы данный класс равным (программа, возвращающая результат функции random(), подошла бы для любого языка).
Класс RP
Определение: |
Сложностный класс ВМТ такая, что для любого :
| состоит из языков таких, что существует
— сложностный класс, допускающий ошибки программ на словах из . Заметим, что константа в пункте 2 определения может быть заменена на любую другую из промежутка , поскольку требуемой вероятности можно добиться множественным запуском программы.
можно рассматривать как вероятностный аналог класса , предполагая, что вероятность угадать сертификат в случае его существования не менее .
Класс ZPP
Определение: |
— сложностный класс, такой что программы, удовлетворяющие его ограничениям, не могут делать ошибок, но работают за полиномиальное время только в среднем случае.
Напомним, что математическое ожидание является усреднением по вероятностным лентам, а не по входу
.Интерактивное доказательство (кажется, оно, но не уверен)
Определение: |
Интерактивным протоколом, разрешающим язык
| , называется абстрактная машина (см. рисунок), моделирующая вычисления как обмен сообщениями между двумя программами ( и ), такими, что
, обменивающийся сообщениями с , будем обозначать .
Интерактивные протоколы делятся на два типа в зависимости от доступа
к вероятностной ленте :- public coins — может видеть вероятностную ленту ;
- private coins — не может видеть вероятностную ленту .
Класс IP
Определение: |
|
Определение: |
Класс AM
Язык
(Arthur–Merlin games) отличается от лишь тем, что может видеть вероятностную ленту .Определение: |
|
Определение: |
Класс PCP
PCP(probabilistically checkable proof) - вид доказательства, проверяемого рандомизированным алгоритмом, использующим ограниченное число случайных бит и читающим ограниченное число бит доказательства. Такой алгоритм должен с достаточно высокими вероятностями принимать корректные доказательства и отвергать ошибочные.
Определение: |
вероятностная машина Тьюринга, имеющая доступ к доказательству — цепочке из , удовлетворяющая следующим свойствам:
| -системой (системой вероятностно проверяемых доказательств) с полнотой и обоснованностью над алфавитом для языка , где , называется верификатор —
Определение: |
Randomness complexity (вероятностной сложностью) | верификатора называется число случайных битов, используемых за всё время работы со входом длины .
Определение: |
Query complexity (запросной сложностью) | верификатора называется число запросов битов из , отсылаемых за всё время работы со входом длины .
Определение: |
Верификатор | называется non-adaptive (неадаптивным), если при отправке запроса не использует ответы на предыдущие. Иными словами, его работа не изменится, если все запросы отправить одновременно.
Определение: |
Сложностный класс Часто обозначают как . | — это объединение всех языков, для которых существует -система над бинарным алфавитом с полнотой и обоснованностью , в которой неадаптивный верификатор работает за полиномиальное время и имеет вероятностную и запросную сложности соответственно и , а доказательства имеют экспоненциальную длину.