Граф компонент рёберной двусвязности — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
== Компоненты реберной двусвязности ==
 
 
{{Определение
 
|definition =
 
Компонентами реберной двусвязности графа, называют его подграфы, множества вершин которых - классы эквивалентности реберной двусвязности, а множества ребер - множества ребер из соответствующих классов эквивалентности.
 
}}
 
 
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
 
Пусть граф <math>G</math> [[Отношение реберной двусвязности|реберно двусвязен]]. Обозначим <math>A_1...A_n</math> - компоненты реберной двусвязности, а <math>a_1...a_m</math> - [[Мост, эквивалентные определения|мосты]] <math>G</math>.
 
Пусть граф <math>G</math> [[Отношение реберной двусвязности|реберно двусвязен]]. Обозначим <math>A_1...A_n</math> - компоненты реберной двусвязности, а <math>a_1...a_m</math> - [[Мост, эквивалентные определения|мосты]] <math>G</math>.
 
Построим граф <math>T</math>, в котором вершинами будут <math>A_1...A_n</math>, а ребрами <math>a_1...a_m</math>, соединяющими соответствующие вершины из соответствующих компонент реберной двусвязности. Полученный граф <math>T</math> называют '''графом компонент реберной двусвязности''' графа <math>G</math>.
 
Построим граф <math>T</math>, в котором вершинами будут <math>A_1...A_n</math>, а ребрами <math>a_1...a_m</math>, соединяющими соответствующие вершины из соответствующих компонент реберной двусвязности. Полученный граф <math>T</math> называют '''графом компонент реберной двусвязности''' графа <math>G</math>.
 +
}}
 +
{{Лемма
 +
|statement=
 +
В определениях, приведенных выше, <math>T</math> - дерево.
 +
|proof=
 +
''а)'' <math>T</math> - связно. (Следует из определения)
 +
''б)'' В <math>T</math> нет циклов.
 +
Пусть какие-то две последовательные вершины <math>A_k</math> и <math>A_l</math> принадлежат какому-то циклу. Тогда ребро <math>(A_k,  A_l)</math> принадлежит этому же циклу.
 +
 +
Следовательно, <math>\exist</math> два реберно неперескающихся пути между вершинами <math>A_k</math>  и <math>A_l</math>, т.е. <math>(A_k, A_l)</math> - не является мостом. Но <math>(A_k, A_l)</math> - мост по условию. Получили противоречие.
 +
<math>T</math> - дерево.
 
}}
 
}}
 
== См. также ==
 
== См. также ==
 
[[Граф блоков-точек сочленения]]
 
[[Граф блоков-точек сочленения]]

Версия 07:22, 7 октября 2010

Определение:
Пусть граф [math]G[/math] реберно двусвязен. Обозначим [math]A_1...A_n[/math] - компоненты реберной двусвязности, а [math]a_1...a_m[/math] - мосты [math]G[/math]. Построим граф [math]T[/math], в котором вершинами будут [math]A_1...A_n[/math], а ребрами [math]a_1...a_m[/math], соединяющими соответствующие вершины из соответствующих компонент реберной двусвязности. Полученный граф [math]T[/math] называют графом компонент реберной двусвязности графа [math]G[/math].
Лемма:
В определениях, приведенных выше, [math]T[/math] - дерево.
Доказательство:
[math]\triangleright[/math]

а) [math]T[/math] - связно. (Следует из определения) б) В [math]T[/math] нет циклов. Пусть какие-то две последовательные вершины [math]A_k[/math] и [math]A_l[/math] принадлежат какому-то циклу. Тогда ребро [math](A_k, A_l)[/math] принадлежит этому же циклу.

Следовательно, [math]\exist[/math] два реберно неперескающихся пути между вершинами [math]A_k[/math] и [math]A_l[/math], т.е. [math](A_k, A_l)[/math] - не является мостом. Но [math](A_k, A_l)[/math] - мост по условию. Получили противоречие.

[math]T[/math] - дерево.
[math]\triangleleft[/math]

См. также

Граф блоков-точек сочленения