1pi1sumwu — различия между версиями
Warrior (обсуждение | вклад) м (→Псевдокод) |
Warrior (обсуждение | вклад) м (→Время работы) |
||
Строка 34: | Строка 34: | ||
== Доказательство корректности == | == Доказательство корректности == | ||
== Время работы == | == Время работы == | ||
− | Время работы алгоритма зависит от того, насколько быстро мы будем добавлять и удалять работы из множества <tex> S </tex>, а также как быстро мы будем искать работу с минимальным | + | Время работы алгоритма зависит от того, насколько быстро мы будем добавлять и удалять работы из множества <tex> S </tex>, а также как быстро мы будем искать работу с минимальным весом. Если в качестве множества <tex> S </tex> использовать структуру данных, умеющую выполнять данные операции за <tex> O(\log n) </tex>, то время работы всего алгоритма будет составлять <tex> O(n\log n) </tex>. Например, такими структурами данных являются [[Двоичная куча | двоичная куча]] и [[Красно-черное дерево | красно-черное дерево]]. |
== Литература == | == Литература == |
Версия 00:00, 12 июня 2013
Эта статья находится в разработке!
Содержание
Постановка задачи
1) Дано
работ и станок.2) Для каждой работы известны её дедлайн
и вес . Время выполнения всех работ равно .Требуется минимизировать
, то есть суммарный вес всех просроченных работ.Алгоритм
Идея алгоритма состоит в том, чтобы на шаге
строить оптимальное расписание для первых работ с наименьшими дедлайнами.Будем считать, что работы отсортированны в порядке неуменьшения их дедлайнов. Пусть мы уже рассмотрели первые
работ, тогда множество содержит только те работы, которые мы успеваем выполнить в порядке неуменьшения их дедлайнов при оптимальном составлении расписания . Рассмотрим работу . Если мы успеваем выполнить данную работу до ее дедлайна, то добавим ее во множество , тем самым получив . Если же работу выполнить до дедлайна мы не успеваем, то найдем в работу с наименьшим весом и заменим ее на работу .Таким образом, рассмотрев все работы, мы получим
— множество работ, которые мы успеваем выполнить до наступления их дедлайнов, причем вес просроченных работ будет наименьшим. От порядка выполнения просроченных работ ничего не зависит, поэтому расположить в расписании их можно произвольным образом.Псевдокод
Предполагаем, что перед началом выполнения алгоритма выполняется, что
. Все работы, дедлайн которых равен , мы в любом случае выполнить без штрафа не успеем, поэтому их изначально можно отнести к просроченным.— множество непросроченных работ, — текущее время.
for to if else найти такое , что
Доказательство корректности
Время работы
Время работы алгоритма зависит от того, насколько быстро мы будем добавлять и удалять работы из множества двоичная куча и красно-черное дерево.
, а также как быстро мы будем искать работу с минимальным весом. Если в качестве множества использовать структуру данных, умеющую выполнять данные операции за , то время работы всего алгоритма будет составлять . Например, такими структурами данных являютсяЛитература
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 96 стр. — ISBN 978-3-540-69515-8