Базис Шаудера — различия между версиями
(заполнил доказательство полноты координатного пространства) |
Komarov (обсуждение | вклад) м |
||
| Строка 88: | Строка 88: | ||
Значит, <tex>\|R_n y \| \le (2 + C) \varepsilon</tex>. | Значит, <tex>\|R_n y \| \le (2 + C) \varepsilon</tex>. | ||
| − | <tex>R_n(Ax) \stackrel{n \to \infty}{\rightrightarrows} 0</tex> на <tex> \overline V </tex>, так как <tex>R_n(y) \stackrel{n \to \infty}{\rightrightarrows} 0</tex> на <tex>M</tex>. | + | <tex>R_n(Ax) \stackrel{n \to \infty}{\rightrightarrows} 0</tex> на <tex> \overline V </tex>, так как <tex>R_n(y) \stackrel{n \to \infty}{\rightrightarrows} 0</tex> на <tex>M</tex> (из ограниченности <tex>\Rightarrow</tex> непрерывности <tex>R_n</tex> и <tex>\|R_n z_j \| < \varepsilon </tex>). |
Получили <tex>\forall \varepsilon > 0 \exists n_0: \|R_{n_0} (Ax)\| < \varepsilon\ \forall x \in \overline{V}</tex>, то есть, <tex>\|R_{n_0}A\| < \varepsilon</tex>. | Получили <tex>\forall \varepsilon > 0 \exists n_0: \|R_{n_0} (Ax)\| < \varepsilon\ \forall x \in \overline{V}</tex>, то есть, <tex>\|R_{n_0}A\| < \varepsilon</tex>. | ||
Версия 01:14, 12 июня 2013
Выясним структуру компактного оператора в специальном случае — когда имеет базис Шаудера.
| Определение: |
| Базисом Шаудера в банаховом пространстве называется множество его элементов такое, что у любого в существует единственное разложение . |
Примеры:
- ортонормированный базис в Гильбертовом пространстве — базис Шаудера
- в и тоже есть базис Шаудера
- но не у всех банаховых пространств он есть
Пусть в есть базис Шаудера, тогда между и — бесконечными последовательностями есть биекция. Определим — это линейное пространство.
Так как ряд сходится, можно превратить в НП, определив норму как .
| Утверждение: |
Пространство относительно этой нормы — банахово. |
|
TODO: Далее приведено доказательство полноты, но нужно также доказать, что — линейное пространство, и что заданная норма удовлетворяет аксиомам, что оставляется читателю в качестве упражнения Пусть дана последовательность (за обозначаем -ый элемент -ой последовательности), которая сходится в себе, то есть при Рассмотрим последовательность при фиксированном , докажем, что эта последовательность сходится: при Рассмотренная последовательность сходится в себе, следовательно, сходится. Пусть эта последовательность сходится к , докажем, что является пределом последовательности . Для начала нужно доказать, что , то есть, что . В неравенстве можно перейти к пределу , получая . Далее, рассмотрим следующую сумму: . Используя равенство , получаем следующее неравенство:
Пусть дано произвольное , выберем и , такое, что при выполняется неравенство, полученное выше. Зафиксируем такое конкретное , и выберем при котором для любого , выполняется , что возможно в силу сходимости ряда . Итого, для произвольного мы получили такое , что при , выполняется , следовательно, ряд сходится и . Полученное ранее неравенство верно для любого и при , то верно и неравенство , то есть, является пределом последовательности . |
Определим биективный линейный оператор как .
Покажем, что он ограничен: , то есть .
Так как и — банаховы, по теореме Банаха об обратном операторе, обратный оператор также ограничен: , то есть, .
| Теорема (почти конечномерность компактного оператора): |
Если — банахово пространство с базисом Шаудера, — компактный, то для всех существует разложение оператора в сумму двух компактных операторов: такое, что:
|
| Доказательство: |
|
В полученном выше соотношении , раскроем нормы: , а значит, Для каждого , определим на элементах два оператора: и . По выше полученным неравенствам, , то есть нормы всех ограничены числом . Запишем оператор как , тогда , . Это значит, что нормы всех остаточных операторов ограничены числом . Пусть — компактный. . , то есть, для всех , — конечномерный оператор. Докажем теперь вторую часть теоремы: покажем, что для всех найдется такое, что . Рассмотрим — единичный шар в , — относительно компактно, следовательно, для любого есть конечная -сеть .
, поэтому . Возьмем , тогда . Значит, . на , так как на (из ограниченности непрерывности и ). Получили , то есть, . В итоге, примем , . и компактны как композиция компактного и огранниченного оператора. |