Вещественное евклидово и псевдоевклидово пространство — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «==[http://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5,_%D0%BD%D0%BE%D1%80%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%...»)
 
Строка 1: Строка 1:
 +
 +
\\статья находится в разработке\\
 
==[http://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5,_%D0%BD%D0%BE%D1%80%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D0%B8_%D0%B5%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%BE%D0%B2%D1%8B_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%B0#.D0.92.D0.B5.D1.89.D0.B5.D1.81.D1.82.D0.B2.D0.B5.D0.BD.D0.BD.D0.BE.D0.B5_.D0.BF.D1.81.D0.B5.D0.B2.D0.B4.D0.BE.D0.B5.D0.B2.D0.BA.D0.BB.D0.B8.D0.B4.D0.BE.D0.B2.D0.BE_.D0.BF.D1.80.D0.BE.D1.81.D1.82.D1.80.D0.B0.D0.BD.D1.81.D1.82.D0.B2.D0.BE Вещественное псевдоевклидово пространство]==
 
==[http://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5,_%D0%BD%D0%BE%D1%80%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D0%B8_%D0%B5%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%BE%D0%B2%D1%8B_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%B0#.D0.92.D0.B5.D1.89.D0.B5.D1.81.D1.82.D0.B2.D0.B5.D0.BD.D0.BD.D0.BE.D0.B5_.D0.BF.D1.81.D0.B5.D0.B2.D0.B4.D0.BE.D0.B5.D0.B2.D0.BA.D0.BB.D0.B8.D0.B4.D0.BE.D0.B2.D0.BE_.D0.BF.D1.80.D0.BE.D1.81.D1.82.D1.80.D0.B0.D0.BD.D1.81.D1.82.D0.B2.D0.BE Вещественное псевдоевклидово пространство]==
 
==[http://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5,_%D0%BD%D0%BE%D1%80%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D0%B8_%D0%B5%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%BE%D0%B2%D1%8B_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%B0#.D0.92.D0.B5.D1.89.D0.B5.D1.81.D1.82.D0.B2.D0.B5.D0.BD.D0.BD.D0.BE.D0.B5_.D0.B5.D0.B2.D0.BA.D0.BB.D0.B8.D0.B4.D0.BE.D0.B2.D0.BE_.D0.BF.D1.80.D0.BE.D1.81.D1.82.D1.80.D0.B0.D0.BD.D1.81.D1.82.D0.B2.D0.BE Вещественное евклидово пространство]==
 
==[http://neerc.ifmo.ru/wiki/index.php?title=%D0%9C%D0%B5%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5,_%D0%BD%D0%BE%D1%80%D0%BC%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D0%B8_%D0%B5%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4%D0%BE%D0%B2%D1%8B_%D0%BF%D1%80%D0%BE%D1%81%D1%82%D1%80%D0%B0%D0%BD%D1%81%D1%82%D0%B2%D0%B0#.D0.92.D0.B5.D1.89.D0.B5.D1.81.D1.82.D0.B2.D0.B5.D0.BD.D0.BD.D0.BE.D0.B5_.D0.B5.D0.B2.D0.BA.D0.BB.D0.B8.D0.B4.D0.BE.D0.B2.D0.BE_.D0.BF.D1.80.D0.BE.D1.81.D1.82.D1.80.D0.B0.D0.BD.D1.81.D1.82.D0.B2.D0.BE Вещественное евклидово пространство]==
 
NB: Вопреки всякой логике, слово "евклидово" пишется с буквы "е", но читается с "э". [http://lurkmore.to/Nuff_Said nuff said]
 
NB: Вопреки всякой логике, слово "евклидово" пишется с буквы "е", но читается с "э". [http://lurkmore.to/Nuff_Said nuff said]
\\статья находится в разработке\\
 
 
==Неравенство Коши-Буняковского(Шварца)==
 
==Неравенство Коши-Буняковского(Шварца)==
 
{{Теорема
 
{{Теорема
Строка 21: Строка 22:
 
|about= следствие из Коши, неравенство треугольника
 
|about= следствие из Коши, неравенство треугольника
 
|statement= <tex>\Vert x+y \Vert \leq \Vert x \Vert+\Vert y \Vert</tex>
 
|statement= <tex>\Vert x+y \Vert \leq \Vert x \Vert+\Vert y \Vert</tex>
|proof <tex>{\Vert x+y \Vert}^{2} = \left\langle x+y; x+y\right\rangle  = \Vert x\Vert^{2}+2\left\langle x;y\right\rangle +
+
|proof= <tex>{\Vert x+y \Vert}^{2} = \left\langle x+y; x+y\right\rangle  = \Vert x\Vert^{2}+2\left\langle x;y\right\rangle +
 
\Vert y\Vert^{2} </tex>
 
\Vert y\Vert^{2} </tex>
 +
 +
<tex>\left\langle x;y\right\rangle \leq \Vert x\Vert\cdot\Vert y\Vert </tex> (по Коши-Буняковскому)
 +
 +
значит, <tex>{\Vert x+y \Vert}^{2} \le \Vert x\Vert^{2}+2{\Vert x\Vert \cdot \Vert y\Vert} + \Vert y\Vert^{2} \le (\Vert x\Vert+\Vert y\Vert)^{2}</tex>
 +
 +
возьмём корень из обоих частей уравнения и получим искомое неравенство
 +
}}
 +
{{Определение
 +
|definition=<tex>\varphi=\angle(x,y)=arccos\frac{\left\langle x;y\right\rangle }{\Vert x\Vert\cdot\Vert y\Vert}</tex>
 
}}
 
}}

Версия 02:30, 12 июня 2013

\\статья находится в разработке\\

Вещественное псевдоевклидово пространство

Вещественное евклидово пространство

NB: Вопреки всякой логике, слово "евклидово" пишется с буквы "е", но читается с "э". nuff said

Неравенство Коши-Буняковского(Шварца)

Теорема:
[math]\forall\: x,y\in E:\;|\left\langle x,y\right\rangle _{G}|\leq\Vert x\Vert_{G}\cdot\Vert y\Vert_{G}[/math]
Доказательство:
[math]\triangleright[/math]

Рассмотрим [math]\left\langle \lambda x+y;\lambda x+y\right\rangle =\Vert\lambda x+y\Vert^{2}\geq0[/math] , где [math]\lambda[/math] - число [math]\left\langle \lambda x;\lambda x\right\rangle +\left\langle \lambda x;y\right\rangle +\left\langle y;\lambda x\right\rangle +\left\langle y;y\right\rangle =\lambda^{2}\left\langle x,x\right\rangle +\lambda\cdot(\left\langle x;y\right\rangle +\left\langle y;x\right\rangle )+\left\langle y,y\right\rangle =\Vert x\Vert^{2}\cdot\lambda^{2}+2\lambda\left\langle x;y\right\rangle + \Vert y\Vert^{2}\geq0[/math]

[math]D \le 0[/math]

[math] D/4=(\left\langle x,y\right\rangle )^{2}-\Vert x\Vert^{2}\cdot\Vert y\Vert^{2}\Rightarrow|\left\langle x,y\right\rangle |\leq\Vert x\Vert\cdot\Vert y\Vert [/math]
[math]\triangleleft[/math]

NB: равенство будет только в случае [math]x=\lambda y[/math]

Теорема (следствие из Коши, неравенство треугольника):
[math]\Vert x+y \Vert \leq \Vert x \Vert+\Vert y \Vert[/math]
Доказательство:
[math]\triangleright[/math]

[math]{\Vert x+y \Vert}^{2} = \left\langle x+y; x+y\right\rangle = \Vert x\Vert^{2}+2\left\langle x;y\right\rangle + \Vert y\Vert^{2} [/math]

[math]\left\langle x;y\right\rangle \leq \Vert x\Vert\cdot\Vert y\Vert [/math] (по Коши-Буняковскому)

значит, [math]{\Vert x+y \Vert}^{2} \le \Vert x\Vert^{2}+2{\Vert x\Vert \cdot \Vert y\Vert} + \Vert y\Vert^{2} \le (\Vert x\Vert+\Vert y\Vert)^{2}[/math]

возьмём корень из обоих частей уравнения и получим искомое неравенство
[math]\triangleleft[/math]
Определение:
[math]\varphi=\angle(x,y)=arccos\frac{\left\langle x;y\right\rangle }{\Vert x\Vert\cdot\Vert y\Vert}[/math]