1pi1sumwu — различия между версиями
Warrior (обсуждение | вклад) м (→Время работы) |
Warrior (обсуждение | вклад) (→Доказательство корректности) |
||
Строка 33: | Строка 33: | ||
== Доказательство корректности == | == Доказательство корректности == | ||
+ | Покажем, что алгоритм строит корректное расписание. Если мы успеваем выполнить очередную работу, то, очевидно, от ее добавления, расписание не может стать некорректным. В противном случае мы пытаемся заменить одну работу из множества <tex> S </tex> на текущую. Но это так же не может сделать наше расписание некорректным. Это следует из того, что мы рассматриваем работы в порядке неуменьшениях их дедлайнов. Пусть мы заменяем работу <tex> k </tex> на работу <tex> i </tex>. Но <tex> d_{k} \leqslant d_{i} </tex>, и следовательно, если мы успевали выполнить работу <tex> k </tex>, то успеем выполнить и работу <tex> i </tex>. | ||
+ | |||
== Время работы == | == Время работы == | ||
Время работы алгоритма зависит от того, насколько быстро мы будем добавлять и удалять работы из множества <tex> S </tex>, а также как быстро мы будем искать работу с минимальным весом. Если в качестве множества <tex> S </tex> использовать структуру данных, умеющую выполнять данные операции за <tex> O(\log n) </tex>, то время работы всего алгоритма будет составлять <tex> O(n\log n) </tex>. Например, такими структурами данных являются [[Двоичная куча | двоичная куча]] и [[Красно-черное дерево | красно-черное дерево]]. | Время работы алгоритма зависит от того, насколько быстро мы будем добавлять и удалять работы из множества <tex> S </tex>, а также как быстро мы будем искать работу с минимальным весом. Если в качестве множества <tex> S </tex> использовать структуру данных, умеющую выполнять данные операции за <tex> O(\log n) </tex>, то время работы всего алгоритма будет составлять <tex> O(n\log n) </tex>. Например, такими структурами данных являются [[Двоичная куча | двоичная куча]] и [[Красно-черное дерево | красно-черное дерево]]. |
Версия 02:52, 12 июня 2013
Эта статья находится в разработке!
Содержание
Постановка задачи
1) Дано
работ и станок.2) Для каждой работы известны её дедлайн
и вес . Время выполнения всех работ равно .Требуется минимизировать
, то есть суммарный вес всех просроченных работ.Алгоритм
Идея алгоритма состоит в том, чтобы на шаге
строить оптимальное расписание для первых работ с наименьшими дедлайнами.Будем считать, что работы отсортированны в порядке неуменьшения их дедлайнов. Пусть мы уже рассмотрели первые
работ, тогда множество содержит только те работы, которые мы успеваем выполнить в порядке неуменьшения их дедлайнов при оптимальном составлении расписания . Рассмотрим работу . Если мы успеваем выполнить данную работу до ее дедлайна, то добавим ее во множество , тем самым получив . Если же работу выполнить до дедлайна мы не успеваем, то найдем в работу с наименьшим весом и заменим ее на работу .Таким образом, рассмотрев все работы, мы получим
— множество работ, которые мы успеваем выполнить до наступления их дедлайнов, причем вес просроченных работ будет наименьшим. От порядка выполнения просроченных работ ничего не зависит, поэтому расположить в расписании их можно произвольным образом.Псевдокод
Предполагаем, что перед началом выполнения алгоритма выполняется, что
. Все работы, дедлайн которых равен , мы в любом случае выполнить без штрафа не успеем, поэтому их изначально можно отнести к просроченным.— множество непросроченных работ, — текущее время.
for to if else найти такое , что
Доказательство корректности
Покажем, что алгоритм строит корректное расписание. Если мы успеваем выполнить очередную работу, то, очевидно, от ее добавления, расписание не может стать некорректным. В противном случае мы пытаемся заменить одну работу из множества
на текущую. Но это так же не может сделать наше расписание некорректным. Это следует из того, что мы рассматриваем работы в порядке неуменьшениях их дедлайнов. Пусть мы заменяем работу на работу . Но , и следовательно, если мы успевали выполнить работу , то успеем выполнить и работу .Время работы
Время работы алгоритма зависит от того, насколько быстро мы будем добавлять и удалять работы из множества двоичная куча и красно-черное дерево.
, а также как быстро мы будем искать работу с минимальным весом. Если в качестве множества использовать структуру данных, умеющую выполнять данные операции за , то время работы всего алгоритма будет составлять . Например, такими структурами данных являютсяЛитература
- Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 96 стр. — ISBN 978-3-540-69515-8