Метрический тензор — различия между версиями
Xottab (обсуждение | вклад) (Новая страница: «==Естественный изоморфизм евклидова пространства и его сопряжённого== Рассмотрим отобра...») |
Xottab (обсуждение | вклад) (→Пересадка формы из E^* в E) |
||
Строка 47: | Строка 47: | ||
|proof= <tex>\left\langle e^k;y\right\rangle = (f^k;y); \forall y \in E</tex> Пусть <tex>y=e_i</tex>, тогда <tex>\left\langle e^k;e_i\right\rangle=(f^k;e_i)=\delta^k_i</tex> | |proof= <tex>\left\langle e^k;y\right\rangle = (f^k;y); \forall y \in E</tex> Пусть <tex>y=e_i</tex>, тогда <tex>\left\langle e^k;e_i\right\rangle=(f^k;e_i)=\delta^k_i</tex> | ||
Рассмотрим <tex>\left\langle e_i;e^k\right\rangle=\overline{\left\langle e^k;e_i\right\rangle}=\overline{\delta^k_i} = \delta^i_k</tex> | Рассмотрим <tex>\left\langle e_i;e^k\right\rangle=\overline{\left\langle e^k;e_i\right\rangle}=\overline{\delta^k_i} = \delta^i_k</tex> | ||
+ | }} | ||
+ | {{Определение | ||
+ | |definition= Наборы векторов <tex>{\{e^k\}}_{k=1}^n</tex> и <tex>{\{e_i\}}_{i=1}^n</tex> называются '''биортогональными базисами''' | ||
+ | }} | ||
+ | NB:<tex>G(x,y)=\left\langle x,y\right\rangle \longleftrightarrow g_{ik}=\left\langle e_i,e_k\right\rangle</tex> | ||
+ | |||
+ | <tex>G = \Vert g_{ik}\Vert; \left\langle x,y\right\rangle = \sum\limits^n_{i,k=1}{\xi^{i}g_{ik}\eta^k}</tex> | ||
+ | {{Теорема | ||
+ | |statement= <tex>e^k= \sum\limits^n_{i=1}{g^{ki}e_i} (1)</tex>; <tex>e_k= \sum\limits^n_{i=1}{g_{ki}e^i} (2)</tex>, где <tex>\Vert g^{ki}\Vert=\Vert g_{ki}\Vert^{-1}</tex> | ||
+ | |proof= <tex>{\{e^i\}}_{i=1}^n</tex> - базис <tex>E \Longrightarrow e_k = \sum\limits^n_{i=1}{\alpha_{ki}e^i}</tex>(разложение единственно) | ||
+ | |||
+ | Тогда <tex>\left\langle e_k;e_j\right\rangle = \left\langle \sum\limits^n_{i=1}{\alpha_{ki}e^i};e_j\right\rangle = \sum\limits^n_{i=1}{\alpha_{ki}\left\langle e^i;e_j\right\rangle} = \alpha_{kj}</tex> (т.к. <tex>\left\langle e^i;e_j\right\rangle = \delta^i_j</tex>) | ||
+ | |||
+ | <tex>\left\langle e_k;e_j\right\rangle = g_{kj}</tex>, т.е <tex>g_{kj}=\alpha_{kj}</tex> | ||
+ | |||
+ | Переход от <tex>(2) к (1)</tex> производится путём умножения на обратную матрицу: | ||
+ | |||
+ | <tex>G^{-1} \vert e_{(k)} = G\cdot e^{(i)}</tex> - и приводим к равенству <tex>(1)</tex> | ||
}} | }} |
Версия 20:30, 13 июня 2013
Естественный изоморфизм евклидова пространства и его сопряжённого
Рассмотрим отображение
по формуле Назовём это равенствоЛемма (1): |
Пусть и . Тогда |
Доказательство: |
По равенству иВычтя одно из другого, по линейности Таким образом, вектору получим: соответствует единственная форма |
Лемма (2): |
Пусть и . Тогда |
Доказательство: |
По равенству иВычтя одно из другого, по линейности Таким образом, форме получим: соответствует единственный вектор |
Лемма (3, о линейности изоморфизма): |
Если и , то и |
Доказательство: |
Линейность изоморфизма напрямую следует из линейности обоих пространств: |
Теорема: |
Формула определяет обратимый линейный оператор |
Изоморфизм конечномерного Евклидова пространства является естественным изоморфизмом.
Пересадка формы из в
Рассмотрим
- базис ; - базис(сопряжённые базисы)
Рассмотрим
Лемма (1): |
- базис ; |
Доказательство: |
ЛНЗ набор Значит, под действием переходит в - базис |
Лемма (2): |
; |
Доказательство: |
Рассмотрим Пусть , тогда |
Определение: |
Наборы векторов | и называются биортогональными базисами
NB:
Теорема: |
; , где |
Доказательство: |
- базис (разложение единственно) Тогда (т.к. ), т.е Переход от производится путём умножения на обратную матрицу: - и приводим к равенству |