Обратная матрица — различия между версиями
(→Алгоритм получения обратной матрицы) |
(→Критерий обратимости матрицы) |
||
Строка 20: | Строка 20: | ||
|statement= | |statement= | ||
Квадратная матрица <tex>A</tex> обратима (имеет обратную матрицу) тогда и только тогда, когда она невырожденная, то есть <tex>\det A \neq 0</tex>. | Квадратная матрица <tex>A</tex> обратима (имеет обратную матрицу) тогда и только тогда, когда она невырожденная, то есть <tex>\det A \neq 0</tex>. | ||
− | |proof = | + | |proof = |
+ | *<tex>detA \ne 0</tex> из определения обратной матрицы. | ||
*Если матрица <tex>A</tex> обратима, то <tex>AB = E</tex> для некоторой матрицы <tex>B</tex>. Тогда, если квадратные матрицы одного и того же порядка, то <tex>\det AB = \det A \cdot \det B</tex>: | *Если матрица <tex>A</tex> обратима, то <tex>AB = E</tex> для некоторой матрицы <tex>B</tex>. Тогда, если квадратные матрицы одного и того же порядка, то <tex>\det AB = \det A \cdot \det B</tex>: | ||
*<tex>1 = \det E = \det AB = \det A \cdot \det B</tex>, следовательно, <tex>\det A \neq 0, \det B \neq 0</tex>. | *<tex>1 = \det E = \det AB = \det A \cdot \det B</tex>, следовательно, <tex>\det A \neq 0, \det B \neq 0</tex>. |
Версия 20:45, 13 июня 2013
Определение: |
Обратная матрица - такая матрица | , при умножении на которую, исходная матрица даёт в результате единичную матрицу
Содержание
Обратимость в алгебре
Определение: |
Пусть | - алгебра над . называется единицей , если , причем единственна
Определение: |
Пусть в алгебре | , тогда называется левым обратным по отношению к , а - правым обратным по отношению к
Определение: |
Пусть | . Левый обратный элементу , являющийся одновременно и правым обратным к нему, называется обратным и обозначается . При этом сам элемент называется обратимым.
Критерий обратимости матрицы
Теорема: |
Квадратная матрица обратима (имеет обратную матрицу) тогда и только тогда, когда она невырожденная, то есть . |
Доказательство: |
Тогда то есть, обратима справа.
|
Свойства обратной матрицы
Методы нахождения обратной матрицы
Метод Гаусса для нахождения обратной матрицы
Возьмём две матрицы: саму
и . Приведём матрицу к единичной матрице методом Гаусса. После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной .Пример
Найдем обратную матрицу для матрицы
- 1) Для начала убедимся, что ее определитель не равен нулю(она невырожденная).
- 2) Справа от исходной матрицы припишем единичную.
- 3) Методом Гаусса приведем левую матрицу к единичной, применяя все операции одновременно и к левой, и к правой матрицам.
- 4)
Метод присоединенной матрицы
, где — присоединенная матрица;
Определение: |
Присоединенная(союзная, взаимная) матрица — матрица, составленная из алгебраических дополнений для соответствующих элементов исходной матрицы. |
Исходная матрица:
Где:
- — присоединённая(союзная, взаимная) матрица;
- — алгебраические дополнения исходной матрицы;
- — элементы исходной матрицы.
Алгебраическим дополнением элемента
матрицы называется число,
где
— дополнительный минор, определитель матрицы, получающейся из исходной матрицы путем вычёркивания i -й строки и j -го столбца.
Алгоритм получения обратной матрицы
- заменить каждый элемент исходной матрицы на его алгебраическое дополнение - в результате будет получена присоединенная матрица
- разделить каждый элемент транспонированной союзной матрицы на определитель исходной матрицы.