Определитель линейного оператора. Внешняя степень оператора. — различия между версиями
Kabanov (обсуждение | вклад) м (→Определитель линейного оператора) |
|||
Строка 11: | Строка 11: | ||
|statement = Пусть <tex>\mathcal{A} \colon X \to X</tex> {{---}} автоморфизм в <tex>\left\{ e \right\}_{i = 1}^{n}\ \Leftrightarrow </tex> <tex> A = ||\alpha_{k}^i|| </tex>, то есть <tex>(\mathcal{A}e_k)^i = \alpha_{n}^i, </tex> <tex> \mathcal{A}e_k = \sum \alpha_{k}^ie_i </tex>. <br>Тогда <tex> det\mathcal{A} = detA = det||\alpha_{k}^i||</tex> | |statement = Пусть <tex>\mathcal{A} \colon X \to X</tex> {{---}} автоморфизм в <tex>\left\{ e \right\}_{i = 1}^{n}\ \Leftrightarrow </tex> <tex> A = ||\alpha_{k}^i|| </tex>, то есть <tex>(\mathcal{A}e_k)^i = \alpha_{n}^i, </tex> <tex> \mathcal{A}e_k = \sum \alpha_{k}^ie_i </tex>. <br>Тогда <tex> det\mathcal{A} = detA = det||\alpha_{k}^i||</tex> | ||
}} | }} | ||
+ | |||
+ | [[Категория: Алгебра и геометрия 1 курс]] | ||
+ | [[Категория: Тензорная алгебра]] |
Версия 15:17, 14 июня 2013
Определитель линейного оператора
Определение: |
Пусть матрицы линейного оператора]. | линейный оператор в некотором базисе линейного пространства над полем . Тогда определителем линейного оператора называется детерминант [
Определение: |
Пусть | — автоморфизм. Тогда
Лемма: |
Пусть — автоморфизм в , то есть . Тогда |