Метод Лупанова синтеза схем — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (убрал неработающую ссылку)
м (Мультиплексор и дешифратор: пояснил про базис)
Строка 54: Строка 54:
 
Иллюстрации элементов приведены на рис. 3 и 4.
 
Иллюстрации элементов приведены на рис. 3 и 4.
  
Можно доказать, что оба элемента представимы схемами с числом элементов <math>\sim 2^n</math>.
+
Можно доказать, что оба элемента представимы схемами с числом элементов <math>\sim 2^n</math> с помощью базиса <math>B</math>.
 +
 
 
== Доказательство ==
 
== Доказательство ==
 
В качестве доказательства ниже будет предложен вариант такой схемы для произвольной функции <math>f(x_1, x_2, ..., x_n)</math> (представление Лупанова). Для удобства поделим схему на блоки:
 
В качестве доказательства ниже будет предложен вариант такой схемы для произвольной функции <math>f(x_1, x_2, ..., x_n)</math> (представление Лупанова). Для удобства поделим схему на блоки:

Версия 15:09, 26 сентября 2013

Формулировка

Теорема:
Любая булева функция от [math]n[/math] аргументов [math]f(x_1, x_2, ..., x_n)[/math] при базисе [math]B = \{\neg, \lor, \land\}[/math] имеет схемную сложность [math]size_B (f) \leq \frac{2^n}{n}[/math].

Представление функции

Для начала поделим аргументы функции на два блока: первые [math]k[/math] и оставшиеся [math](n - k)[/math].

Для удобства дальнейших рассуждений представим булеву функцию в виде таблицы, изображённой на рис. 1.

  • По горизонтали на ней представлены все значения [math]f(\sigma_1, \sigma_2, ..., \sigma_k, x_{k + 1}, x_{k + 2}, ..., x_n)[/math] (здесь и далее [math]\sigma[/math] - фиксированное значение, [math]x[/math] - переменное);
  • По вертикали на ней представлены все значения [math]f(x_1, x_2, ..., x_k, \sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_n)[/math].

Таким образом, легко заметить, что значение [math]f(x_1, x_2, ..., x_n)[/math] находится на пересечении строки [math]x_1, x_2, ..., x_k[/math] и столбца [math]x_{k + 1}, x_{k + 2}, ..., x_n[/math].

Разделение на полосы

Разделим таблицы на горизонтальные полосы шириной [math]s[/math] (последняя полоса, возможно, будет короче остальных; её длину обозначим [math]s'[/math]). Пронумеруем полосы сверху вниз от 1 до [math]p=\lceil\frac{2^k}{s}\rceil[/math].

Рассмотрим независимо некоторую полосу. Среди её столбцов при небольшом [math]s[/math] будет много повторений, поэтому введём понятие сорта столбца.

Определение:
Сорт столбца полосы - класс эквивалентности, к которому столбец принадлежит (два столбца эквивалентны, если совпадают по значениям).

Число сортов столбцов [math]i[/math]-й полосы обозначим как [math]t(i)[/math]. Понятно, что для любой полосы [math]t(i) \leq 2^s[/math] (для последней [math]t(i) \leq 2^{s'}[/math]).

Функция для полосы

Пусть для некоторого [math]i[/math]

  • [math]\beta_{j}[/math] - столбец [math]i[/math]-й полосы [math]j[/math]-го сорта;
  • [math](\sigma_1^l, \sigma_2^l, ..., \sigma_k^l)[/math] - аргументы функции, соответствующие её значениям в [math]l[/math]-й строке [math]i[/math]-й полосы.

Тогда введём булеву функцию

[math]g_{ij}(x_1, x_2, ..., x_k) = \begin{cases} \beta_{jl}& , \mbox{if } \exists l \in [1; s]~(x_1, x_2, ..., x_k) = (\sigma_1^l, \sigma_2^l, ..., \sigma_k^l) \\ 0&, \mbox{else} \end{cases}[/math]

Другими словами, если строка, соответствующая аргументам функции [math]x_1, x_2, ..., x_k[/math], находится в [math]i[/math]-й полосе, то функция возвращает значение, записанное в столбце сорта [math]j[/math] для этой строки. Если же эта строка находится в другой полосе, то функция вернёт 0. Иллюстрация принципа работы функции [math]g_{ij}[/math] приведена на рис. 2.

Поскольку изначальный столбец [math](\sigma_{k + 1}, \sigma_{k + 2}, \sigma_{n})[/math] складывается из столбцов соответствующих сортов в полосах,

[math]f(x_1, x_2, ..., x_k, \sigma_{k + 1}, \sigma_{k + 2}, \sigma_{n}) = g_{1j_1} \vee g_{2j_2} \vee ... \vee g_{pj_p}[/math], где [math]j_l[/math] - номер сорта столбца полосы [math]l[/math], соответствующего столбцу [math](\sigma_{k + 1}, \sigma_{k + 2}, \sigma_{n})[/math].

Мультиплексор и дешифратор

Для упрощения доказательства теоремы введём элементы мультиплексор и дешифратор.

Определение:
Мультиплексор - логический элемент, получающий на вход
  • [math]2^n[/math] булевых значений;
  • [math]n[/math]-значное число [math]x[/math] в двоичном представлении
и возвращающий значение на [math]x[/math]-м входе.
Определение:
Дешифратор - логический элемент, получающий на вход
  • булево значение [math]z[/math];
  • [math]n[/math]-значное число [math]x[/math] в двоичном представлении
и выводящий [math]z[/math] на [math]x[/math]-й из своих [math]2^n[/math] выходов. На все остальные выходы элемент выдаёт 0.

Иллюстрации элементов приведены на рис. 3 и 4.

Можно доказать, что оба элемента представимы схемами с числом элементов [math]\sim 2^n[/math] с помощью базиса [math]B[/math].

Доказательство

В качестве доказательства ниже будет предложен вариант такой схемы для произвольной функции [math]f(x_1, x_2, ..., x_n)[/math] (представление Лупанова). Для удобства поделим схему на блоки:

  • Блок A - дешифратор, которому на вход подали 1 и [math](x_1, x_2, ..., x_k)[/math] в качестве двоичного представления числа.
  • Блок B - схемная реализация всех [math]g_{ij}[/math]. Функцию [math]g_{ij}[/math] можно реализовать как [math]\bigvee\limits_{\beta_l = 1} y_{il}[/math], где [math]y_{il}[/math] - выдал ли дешифратор "1" на [math]l[/math]-м выходе [math]i[/math]-й полосы.
  • Блок C - схемная реализация всех [math]f(x_1, x_2, ..., x_k, \sigma_{k + 1}, \sigma_{k + 2}, ..., \sigma_n)[/math].