Задача о минимуме/максимуме скалярного произведения — различия между версиями
(→Решение) |
|||
Строка 18: | Строка 18: | ||
4. Аналогично для получения максимума во всех парах чисел <tex>(x_i, y_i)</tex> и <tex>(x_j, y_j)</tex>, таких что <tex>x_i < x_j</tex> и <tex>y_i > y_j</tex> нужно менять местами <tex>y_i</tex> и <tex>y_j</tex>. В результате получится отсортированная по возрастанию последовательность. | 4. Аналогично для получения максимума во всех парах чисел <tex>(x_i, y_i)</tex> и <tex>(x_j, y_j)</tex>, таких что <tex>x_i < x_j</tex> и <tex>y_i > y_j</tex> нужно менять местами <tex>y_i</tex> и <tex>y_j</tex>. В результате получится отсортированная по возрастанию последовательность. | ||
}} | }} | ||
+ | |||
+ | == Примечание == | ||
+ | * Данная теорема также широко известна как [http://ru.wikipedia.org/wiki/Перестановочное_неравенство транс-неравенство или перестановочное неравенство]. | ||
== Литература == | == Литература == |
Версия 02:40, 6 ноября 2013
Задача о минимуме/максимуме скалярного произведения - задача о нахождении минимальной/максимальной суммы попарных произведений для двух заданных упорядоченных наборов чисел.
Решение
Скалярным произведением двух упорядоченных последовательностей чисел будем называть число
Теорема (о минимуме/максимуме скалярного произведения): |
Минимум скалярного произведения достигается при сопоставлении возрастащей последовательности и убывающей последовательности . При сопоставлении возрастающей достигается максимум. |
Доказательство: |
1. Будем считать, что отсортирована по возрастанию.2. Покажем, что если существуют пары чисел и , такие что и , то скалярное произведение можно уменьшить, поменяв местами и . Так так , то .3.Проделав такую замену для всех 4. Аналогично для получения максимума во всех парах чисел получим отсортированную по убыванию последовательность . и , таких что и нужно менять местами и . В результате получится отсортированная по возрастанию последовательность. |
Примечание
- Данная теорема также широко известна как транс-неравенство или перестановочное неравенство.
Литература
1. Романовский И. В. Дискретный анализ. — 3-е изд. — СПб.: Невский Диалект; БХВ-Петербург, 2003. — С. 320.