Количество помеченных деревьев — различия между версиями
Строка 11: | Строка 11: | ||
|statement=Число помеченных деревьев порядка <tex>n</tex> равно <tex>n^{n - 2}</tex>. | |statement=Число помеченных деревьев порядка <tex>n</tex> равно <tex>n^{n - 2}</tex>. | ||
|proof= | |proof= | ||
− | ''Доказательство 1.'' Так как между помеченными деревьями порядка <tex>n</tex> и последовательностями длины <tex>n - 2</tex> из чисел от <tex>1</tex> до <tex>n</tex> существует биекция, <br> то <tex>|</tex>множество помеченных деревьев<tex>|</tex> = <tex>|</tex>множество последовательностей длины <tex>n - 2</tex> из чисел от <tex>1</tex> до <tex>n</tex><tex>|</tex> = <tex>n^{n - 2}</tex>. | + | * ''Доказательство 1.'' Так как между помеченными деревьями порядка <tex>n</tex> и последовательностями длины <tex>n - 2</tex> из чисел от <tex>1</tex> до <tex>n</tex> существует биекция, <br> то <tex>|</tex>множество помеченных деревьев<tex>|</tex> = <tex>|</tex>множество последовательностей длины <tex>n - 2</tex> из чисел от <tex>1</tex> до <tex>n</tex><tex>|</tex> = <tex>n^{n - 2}</tex>. |
− | + | * ''Доказательство 2.'' С помощью [[Подсчет числа остовных деревьев с помощью матрицы Кирхгофа |матрицы Кирхгофа]] для полного графа на <tex>n</tex> на вершинах. | |
− | ''Доказательство 2.'' С помощью [[Подсчет числа остовных деревьев с помощью матрицы Кирхгофа |матрицы Кирхгофа]] для полного графа на <tex>n</tex> на вершинах. | ||
}} | }} | ||
== См. также == | == См. также == | ||
* [[Коды Прюфера]] | * [[Коды Прюфера]] |
Версия 01:56, 9 октября 2010
Помеченное дерево.
Определение: |
Помеченное дерево порядка n - дерево порядка | , вершинам которого взаимно однозначно соответствуют числа от 1 до n.
Количество помеченных деревьев.
Теорема (Формула Кэли): |
Число помеченных деревьев порядка равно . |
Доказательство: |
|