Количество помеченных деревьев — различия между версиями
| Строка 11: | Строка 11: | ||
|statement=Число помеченных деревьев порядка <tex>n</tex> равно <tex>n^{n - 2}</tex>. | |statement=Число помеченных деревьев порядка <tex>n</tex> равно <tex>n^{n - 2}</tex>. | ||
|proof= | |proof= | ||
| + | Можно доказать формулу двумя способами: | ||
* ''Доказательство 1.'' Так как между помеченными деревьями порядка <tex>n</tex> и последовательностями длины <tex>n - 2</tex> из чисел от <tex>1</tex> до <tex>n</tex> существует биекция, <br> то <tex>|</tex>множество помеченных деревьев<tex>|</tex> = <tex>|</tex>множество последовательностей длины <tex>n - 2</tex> из чисел от <tex>1</tex> до <tex>n</tex><tex>|</tex> = <tex>n^{n - 2}</tex>. | * ''Доказательство 1.'' Так как между помеченными деревьями порядка <tex>n</tex> и последовательностями длины <tex>n - 2</tex> из чисел от <tex>1</tex> до <tex>n</tex> существует биекция, <br> то <tex>|</tex>множество помеченных деревьев<tex>|</tex> = <tex>|</tex>множество последовательностей длины <tex>n - 2</tex> из чисел от <tex>1</tex> до <tex>n</tex><tex>|</tex> = <tex>n^{n - 2}</tex>. | ||
* ''Доказательство 2.'' С помощью [[Подсчет числа остовных деревьев с помощью матрицы Кирхгофа |матрицы Кирхгофа]] для полного графа на <tex>n</tex> на вершинах. | * ''Доказательство 2.'' С помощью [[Подсчет числа остовных деревьев с помощью матрицы Кирхгофа |матрицы Кирхгофа]] для полного графа на <tex>n</tex> на вершинах. | ||
Версия 01:58, 9 октября 2010
Помеченное дерево.
| Определение: |
| Помеченное дерево порядка n - дерево порядка , вершинам которого взаимно однозначно соответствуют числа от 1 до n. |
Количество помеченных деревьев.
| Теорема (Формула Кэли): |
Число помеченных деревьев порядка равно . |
| Доказательство: |
|
Можно доказать формулу двумя способами:
|