Алгоритм Дейкстры — различия между версиями
Строка 1: | Строка 1: | ||
− | В [[Ориентированный граф|ориентированном]] взвешенном [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графе]] <tex>G = (V, E)</tex>, вес [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|рёбер]] которого неотрицателен и определяется весовой функцией <tex>w : E \ | + | В [[Ориентированный граф|ориентированном]] взвешенном [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графе]] <tex>G = (V, E)</tex>, вес [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|рёбер]] которого неотрицателен и определяется весовой функцией <tex>w : E \to \mathbb{R}</tex>, алгоритм Дейкстры находит длины кратчайших [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|путей]] из заданной [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|вершины]] <tex>s</tex> до всех остальных. |
== Алгоритм == | == Алгоритм == |
Версия 11:15, 16 ноября 2013
В ориентированном взвешенном графе , вес рёбер которого неотрицателен и определяется весовой функцией , алгоритм Дейкстры находит длины кратчайших путей из заданной вершины до всех остальных.
Алгоритм
В алгоритме поддерживается множество вершин
, для которых уже вычислены длины кратчайших путей до них из . На каждой итерации основного цикла выбирается вершина , которой на текущий момент соответствует минимальная оценка кратчайшего пути. Вершина добавляется в множество и производится релаксация всех исходящих из неё рёбер.Псевдокод
Для всех
Пока
-
Пусть
минимальный
-
Для всех
таких, что
-
если
то
-
Обоснование корректности
Теорема: |
Пусть — ориентированный взвешенный граф, вес рёбер которого неотрицателен, — стартовая вершина.
Тогда после выполнения алгоритма Дейкстры для всех , где — длина кратчайшего пути из вершины в вершину |
Доказательство: |
Докажем по индукции, что в момент посещения любой вершины , .
|
Оценка сложности
Основной цикл выполняется
раз. Релаксация выполнится всего раз. В реализации алгоритма присутствует функция выбора вершины с минимальным значением , асимптотика её работы зависит от реализации.Таким образом:
Структура данных | Время работы |
---|---|
Наивная реализация | |
Двоичная куча | |
Фибоначчиева куча |
Источники
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)
- Википедия — свободная энциклопедия