Эйлеровость графов — различия между версиями
(→Критерий Эйлеровости) |
|||
Строка 34: | Строка 34: | ||
<br/> | <br/> | ||
Докажем утверждение по индукции.<br> | Докажем утверждение по индукции.<br> | ||
− | ''База'' | + | ''База:''<br/> |
+ | Лес из <math>N</math> деревьев, каждое из 1 вершины.<br> | ||
''Переход:''<br> | ''Переход:''<br> | ||
Рассмотри граф, в котором степени всех вершин четные.<br/> | Рассмотри граф, в котором степени всех вершин четные.<br/> | ||
Строка 44: | Строка 45: | ||
при этом количество ребер в графе уменьшится. Для <math>G - c</math>, по предположению индукции, существует эйлеров цикл <math>e</math>.<br/> | при этом количество ребер в графе уменьшится. Для <math>G - c</math>, по предположению индукции, существует эйлеров цикл <math>e</math>.<br/> | ||
Тогда в <math>G</math> тоже существует Эйлеров обход - сначала обойти цикл с, начиная с вершины <math>u</math>, затем обойти <math>e</math>.<br/> | Тогда в <math>G</math> тоже существует Эйлеров обход - сначала обойти цикл с, начиная с вершины <math>u</math>, затем обойти <math>e</math>.<br/> | ||
+ | |corollary= | ||
+ | Неориентированный связный граф <math>G = (V, E)</math> является полуэйлеровым тогда и только тогда, когда содержит ровно две вершины нечетной степени.<br/> | ||
}} | }} | ||
− | |||
− | |||
− | |||
− | |||
====Ориентированный граф==== | ====Ориентированный граф==== | ||
'''Теорема'''<br/> | '''Теорема'''<br/> |
Версия 04:58, 9 октября 2010
Содержание
Эйлеров путь
Путь
называется Эйлеровым, если содержит все ребра , причем каждое - только один раз.
Эйлеров цикл
Цикл
называется Эйлеровым, если содержит все ребра , причем каждое - только один раз.
Эквивалентно: Эйлеровым циклом является Эйлеров путь, являющийся циклом.
Эйлеров граф
Определение
Граф
Граф, содержащий Эйлеров путь, не являющийся циклом, называют полуэйлеровым.
Критерий Эйлеровости
Неориентированный граф
Теорема: |
Неориентированный почти связный[1] граф является Эйлеровым тогда и только тогда, когда не содержит вершин нечетной степени. |
Доказательство: |
Достаточность:
Рассмотрим вершину |
Ориентированный граф
Теорема
Ориентированный граф является Эйлеровым тогда и только тогда, входная степень любой вершины равна ее выходной степени.
Доказательство
Достаточность:
Необходимость:
Следствие
Ориентированный граф является полуэйлеровым тогда и только тогда, когда содержит ровно одну вершину, входная степень которой
на единицу больше выходной, и ровно одну вершину, выходная степень которой на единицу больше входной.
Примечания
- ↑ Граф назовем почти связным, если все его компоненты связности, кроме, быть может, одной, имеют размер 1.