Рефлексивное отношение — различия между версиями
Proshev (обсуждение | вклад) |
Savelin (обсуждение | вклад) (добавлена внутренняя ссылка) |
||
Строка 16: | Строка 16: | ||
== Примеры рефлексивных отношений == | == Примеры рефлексивных отношений == | ||
− | * Отношения '''эквивалентности''': | + | * Отношения '''[[Отношение эквивалентности|эквивалентности]]''': |
** отношение ''равенства'' <tex>=\;</tex> | ** отношение ''равенства'' <tex>=\;</tex> | ||
** отношение ''сравнимости по модулю'' | ** отношение ''сравнимости по модулю'' |
Версия 22:47, 11 декабря 2013
Бинарное отношение на множестве называется рефлексивным, если всякий элемент этого множества находится в отношении с самим собой.
Определение: |
Отношение | называется рефлексивным, если .
Свойство рефлексивности при отношениях, заданных графом, состоит в том, что каждая вершина имеет петлю — дугу (x, x), а матрица смежности этого графа на главной диагонали имеет единицы.
Если это условие не выполнено ни для какого элемента множества
, то отношение называется антирефлексивным.
Определение: |
Отношение | называется антирефлексивным, если .
Если антирефлексивное отношение задано графом, то ни у одной вершины не будет петли — дуги (x, x), а в матрице смежности на главной диагонали будут нули.
Примеры рефлексивных отношений
- Отношения эквивалентности:
- отношение равенства
- отношение сравнимости по модулю
- отношение параллельности прямых и плоскостей
- отношение подобия геометрических фигур
- Отношения частичного порядка:
- отношение нестрогого неравенства
- отношение нестрогого подмножества
- отношение делимости
- Отношение "иметь одинаковый цвет волос"
- Отношение "принадлежать одному виду"
Примеры антирефлексивных отношений
- отношение строгого неравенства
- отношение строгого подмножества
- отношение "быть родителем"