Эйлеровость графов — различия между версиями
(→Эйлеров цикл) |
(→Определение) |
||
| Строка 13: | Строка 13: | ||
==Эйлеров граф== | ==Эйлеров граф== | ||
===Определение=== | ===Определение=== | ||
| − | Граф <math>G = (V, E)</math> называется Эйлеровым, если содержит Эйлеров цикл. | + | Граф <math>G = (V, E)</math> называется Эйлеровым, если содержит Эйлеров цикл. Граф, содержащий Эйлеров путь, не являющийся циклом, называют полуэйлеровым. <br/> |
| − | |||
| − | Граф, содержащий Эйлеров путь, не являющийся циклом, называют полуэйлеровым. <br/> | ||
===Критерий Эйлеровости=== | ===Критерий Эйлеровости=== | ||
Версия 05:06, 9 октября 2010
Содержание
Эйлеров путь
Путь в графе
называется Эйлеровым, если содержит все ребра , причем каждое - только один раз.
Эйлеров цикл
Цикл в графе
называется Эйлеровым, если содержит все ребра , причем каждое - только один раз.
Эквивалентно: Эйлеровым циклом является Эйлеров путь, являющийся циклом.
Эйлеров граф
Определение
Граф называется Эйлеровым, если содержит Эйлеров цикл. Граф, содержащий Эйлеров путь, не являющийся циклом, называют полуэйлеровым.
Критерий Эйлеровости
Неориентированный граф
| Теорема: |
Неориентированный почти связный[1] граф является Эйлеровым тогда и только тогда, когда не содержит вершин нечетной степени. |
| Доказательство: |
|
Достаточность:
Рассмотрим вершину со степенью больше 2. После удаления цикла из графа степени всех вершин останутся четными, |
Следствие
Неориентированный связный граф является полуэйлеровым тогда и только тогда, когда содержит ровно две вершины нечетной степени.
Ориентированный граф
| Теорема: |
Ориентированный граф является Эйлеровым тогда и только тогда, входная степень любой вершины равна ее выходной степени. |
| Доказательство: |
| Аналогично неориентированному графу. |
Следствие
Ориентированный граф является полуэйлеровым тогда и только тогда, когда содержит ровно одну вершину, входная степень которой
на единицу больше выходной, и ровно одну вершину, выходная степень которой на единицу больше входной.
Примечания
- ↑ Граф назовем почти связным, если все его компоненты связности, кроме, быть может, одной, имеют размер 1.