Теорема Менгера — различия между версиями
Filchenko (обсуждение | вклад) (Фикс условий) |
Filchenko (обсуждение | вклад) (Доказательство вершинной) |
||
Строка 3: | Строка 3: | ||
Пусть G - конечный, неориентированный граф, <math>\kappa(G) = k</math> <math>\Leftrightarrow</math> для всех пар вершин <math>x, y \backepsilon G</math> существует k вершинно непересекающихся путей из x в y | Пусть G - конечный, неориентированный граф, <math>\kappa(G) = k</math> <math>\Leftrightarrow</math> для всех пар вершин <math>x, y \backepsilon G</math> существует k вершинно непересекающихся путей из x в y | ||
|proof= | |proof= | ||
+ | Пусть, существует лишь <math>m < k</math> вершинно непересекающихся путей. Тогда все остальные пути будут пересекать эти m, причем с каждым из m все пересечения будут происходить в одной точке(если это не так, то можно было бы выбрать больше, чем m путей). Тогда удалив m точек пересечения (если с путем не пересекаются другие пути - то любую вершину) мы разорвем все пути из x в y. Однако, по условию необходимо удалить k вершин, чтобы граф потерял связность. Значит, предположение неверно. Прямое следствие доказано. | ||
+ | Докажем обратное: | ||
+ | Между x и y существует k вершинно неперескающихся путей, очевидно, нельзя удалить <math>m < k</math> вершин так, чтобы граф потерял связность. Покажем, что достаточно удалить k вершин, чтобы граф потерял связность. Возьмем все пути из x в y, они пересекут выбранные k, причем каждый из них в одной точке. Удалив точки пересечения мы порвем все пути. Теорема доказана. | ||
}} | }} |
Версия 08:04, 10 октября 2010
Теорема: |
Пусть G - конечный, неориентированный граф, для всех пар вершин существует k вершинно непересекающихся путей из x в y |
Доказательство: |
Пусть, существует лишь Между x и y существует k вершинно неперескающихся путей, очевидно, нельзя удалить вершинно непересекающихся путей. Тогда все остальные пути будут пересекать эти m, причем с каждым из m все пересечения будут происходить в одной точке(если это не так, то можно было бы выбрать больше, чем m путей). Тогда удалив m точек пересечения (если с путем не пересекаются другие пути - то любую вершину) мы разорвем все пути из x в y. Однако, по условию необходимо удалить k вершин, чтобы граф потерял связность. Значит, предположение неверно. Прямое следствие доказано. Докажем обратное: вершин так, чтобы граф потерял связность. Покажем, что достаточно удалить k вершин, чтобы граф потерял связность. Возьмем все пути из x в y, они пересекут выбранные k, причем каждый из них в одной точке. Удалив точки пересечения мы порвем все пути. Теорема доказана. |
Теорема: |
Пусть G - конечный, неориентированный граф, для всех пар вершин существует k реберно непересекающихся путей из x в y |