Рефлексивное отношение — различия между версиями
Строка 1: | Строка 1: | ||
− | В математике бинарное отношение <math>R</math> на множестве <math>X</math> называется '''рефлексивным''', если всякий элемент этого множества находится в отношении <math>R</math> с самим собой. | + | В математике [[Определения отношения|бинарное отношение]] <math>R</math> на множестве <math>X</math> называется '''рефлексивным''', если всякий элемент этого множества находится в отношении <math>R</math> с самим собой. |
{{Определение | {{Определение | ||
|definition = | |definition = | ||
Отношение <math>R</math> называется рефлексивным, если <math>\forall a \in X:\ (a R a)</math>. | Отношение <math>R</math> называется рефлексивным, если <math>\forall a \in X:\ (a R a)</math>. | ||
}} | }} | ||
− | Свойство рефлексивности при заданных отношениях графом состоит в том, что каждая вершина имеет петлю — дугу (х, х), а матрица смежности этого графа на главной диагонали имеет единицы. | + | Свойство рефлексивности при заданных отношениях [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графом]] состоит в том, что каждая вершина имеет петлю — дугу (х, х), а матрица смежности этого графа на главной диагонали имеет единицы. |
Если это условие не выполнено ни для какого элемента множества <math>X</math>, то отношение <math>R</math> называется '''антирефлексивным'''. | Если это условие не выполнено ни для какого элемента множества <math>X</math>, то отношение <math>R</math> называется '''антирефлексивным'''. |
Версия 19:19, 10 октября 2010
В математике бинарное отношение на множестве называется рефлексивным, если всякий элемент этого множества находится в отношении с самим собой.
Определение: |
Отношение | называется рефлексивным, если .
Свойство рефлексивности при заданных отношениях графом состоит в том, что каждая вершина имеет петлю — дугу (х, х), а матрица смежности этого графа на главной диагонали имеет единицы.
Если это условие не выполнено ни для какого элемента множества
, то отношение называется антирефлексивным.Если антирефлексивное отношение задано графом, то ни у одной вершины не будет петли - дуги (x, x), а в матрице смежности на главной диагонали будут нули.
Формально антирефлексивность отношения
определяется как: .Примеры рефлексивных отношений
- Отношения эквивалентности:
- отношение равенства ;
- отношение сравнимости по модулю;
- отношение параллельности прямых и плоскостей;
- отношение подобия геометрических фигур.
- Отношения частичного порядка:
- отношение нестрогого неравенства ;
- отношение нестрогого подмножества ;
- отношение делимости .
Примеры антирефлексивных отношений
- отношение строгого неравенства ;
- отношение строгого подмножества .