Алгоритм D* — различия между версиями
Kabanov (обсуждение | вклад) м (→Псевдокод) |
Kabanov (обсуждение | вклад) м (→Описание) |
||
| Строка 7: | Строка 7: | ||
=== Описание === | === Описание === | ||
| − | Функция <tex>g(s)</tex> будет возвращать последнее известное (и самое минимальное) значение расстояния от вершины <tex>s_{start}</tex> до <tex>s</tex>. Её значение будет почти аналогичным значению в [[Алгоритм A* | алгоритме A*]], за исключением того, что в данном алгоритме | + | Функция <tex>g(s)</tex> будет возвращать последнее известное (и самое минимальное) значение расстояния от вершины <tex>s_{start}</tex> до <tex>s</tex>. Её значение будет почти аналогичным значению в [[Алгоритм A* | алгоритме A*]], за исключением того, что в данном алгоритме наc интересуют только <tex>g(s)</tex>-значения известных вершин на данной итерации. |
Будем поддерживать для каждой вершины два вида смежных с ней вершин: | Будем поддерживать для каждой вершины два вида смежных с ней вершин: | ||
| Строка 16: | Строка 16: | ||
Функция <tex>0 \leqslant c(s, s') \leqslant +\infty</tex> будет возвращать стоимость перехода из вершины <tex>s</tex> в вершину <tex>s'</tex>. При этом <tex>s' \in Succ(s)</tex>. | Функция <tex>0 \leqslant c(s, s') \leqslant +\infty</tex> будет возвращать стоимость перехода из вершины <tex>s</tex> в вершину <tex>s'</tex>. При этом <tex>s' \in Succ(s)</tex>. | ||
| − | + | {{Определение | |
| + | |definition=Будем называть '''rhs-значением''' (''right-hand side value'') такую функцию <tex>rhs(s)</tex>, которая будет возвращать потенциальное минимальное расстояние от <tex>s_{start}</tex> до <tex>s</tex> по следующим правилам: | ||
<tex>rhs(s) = | <tex>rhs(s) = | ||
\begin{cases} | \begin{cases} | ||
| Строка 23: | Строка 24: | ||
\end{cases} | \end{cases} | ||
</tex> | </tex> | ||
| + | Так как rhs-значение использует минимальное значение из минимальных расстояний от <tex>s_{start}</tex> до вершин, входящих в данную вершину <tex>s</tex>, это будет нам давать информацию об оценочном расстоянии от <tex>s_{start}</tex> до <tex>s</tex>. | ||
| + | }} | ||
| − | Вершина <tex>s</tex> | + | {{Определение |
| − | + | |definition=Вершина <tex>s</tex> называется '''насыщенной''' (''locally consistent''), если <tex>g(s) = rhs(s)</tex> | |
| − | + | }} | |
| − | + | ||
| + | {{Определение | ||
| + | |definition=Вершина <tex>s</tex> называется '''переполненной''' (''locally overconsistent''), если <tex>g(s) > rhs(s)</tex> | ||
| + | }} | ||
| + | |||
| + | {{Определение | ||
| + | |definition=Вершина <tex>s</tex> называется '''ненасыщенной''' (''locally underconsistent''), если <tex>g(s) < rhs(s)</tex> | ||
| + | }} | ||
Очевидно, что если все вершины насыщены, то мы можем найти расстояние от стартовой вершины до любой. Такой граф будем называть устойчивым (насыщенным). | Очевидно, что если все вершины насыщены, то мы можем найти расстояние от стартовой вершины до любой. Такой граф будем называть устойчивым (насыщенным). | ||
| Строка 34: | Строка 44: | ||
<tex>h(s_{goal},s_{goal}) = 0</tex> и <tex>h(s, s_{goal}) \leqslant c(s,s') + h(s',s_{goal})</tex> для всех <tex>s \in V</tex> и <tex>s' \in Succ(s)</tex> | <tex>h(s_{goal},s_{goal}) = 0</tex> и <tex>h(s, s_{goal}) \leqslant c(s,s') + h(s',s_{goal})</tex> для всех <tex>s \in V</tex> и <tex>s' \in Succ(s)</tex> | ||
| − | + | {{Определение | |
| − | * <tex>k_1(s) = \min(g(s), rhs(s)) + h(s, s_{goal})</tex> | + | |definition=Будем называть '''ключом''' вершины такую функцию <tex>key(s)</tex>, которая возвращает вектор из 2-ух значений <tex>k_1(s)</tex>, <tex>k_2(s)</tex>. |
| − | * <tex>k_2(s) = \min(g(s), rhs(s))</tex> | + | * <tex>k_1(s) = \min(g(s), rhs(s)) + h(s, s_{goal})</tex> |
| − | + | * <tex>k_2(s) = \min(g(s), rhs(s))</tex>, | |
| + | где <tex>s</tex> - вершина из множества <tex>V</tex> | ||
| + | }} | ||
Если в конце поиска пути <tex>g(s_{goal}) = +\infty</tex>, то мы не смогли найти путь от <tex>s_{start}</tex> до <tex>s_{goal}</tex> на текущей итерации. Но после следующего изменения графа путь вполне может найтись. | Если в конце поиска пути <tex>g(s_{goal}) = +\infty</tex>, то мы не смогли найти путь от <tex>s_{start}</tex> до <tex>s_{goal}</tex> на текущей итерации. Но после следующего изменения графа путь вполне может найтись. | ||
Версия 22:55, 4 января 2014
Алгоритм D* — алгоритм поиска кратчайшего пути во взвешенном ориентированном графе, где структура графа неизвестна заранее или постоянно подвергается изменению. Разработан Свеном Кёнигом и Максимом Лихачевым в 2002 году.
Содержание
Алгоритм LPA*
Постановка задачи
Дан взвешенный ориентированный граф . Даны вершины и . Требуется после каждого изменения графа уметь вычислять функцию для каждой известной вершины
Описание
Функция будет возвращать последнее известное (и самое минимальное) значение расстояния от вершины до . Её значение будет почти аналогичным значению в алгоритме A*, за исключением того, что в данном алгоритме наc интересуют только -значения известных вершин на данной итерации.
Будем поддерживать для каждой вершины два вида смежных с ней вершин:
- Обозначим множество как множество вершин, исходящих из вершины .
- Обозначим множество как множество вершин, входящих в вершину .
Ясно, что обязано соблюдаться условие: и .
Функция будет возвращать стоимость перехода из вершины в вершину . При этом .
| Определение: |
| Будем называть rhs-значением (right-hand side value) такую функцию , которая будет возвращать потенциальное минимальное расстояние от до по следующим правилам:
Так как rhs-значение использует минимальное значение из минимальных расстояний от до вершин, входящих в данную вершину , это будет нам давать информацию об оценочном расстоянии от до . |
| Определение: |
| Вершина называется насыщенной (locally consistent), если |
| Определение: |
| Вершина называется переполненной (locally overconsistent), если |
| Определение: |
| Вершина называется ненасыщенной (locally underconsistent), если |
Очевидно, что если все вершины насыщены, то мы можем найти расстояние от стартовой вершины до любой. Такой граф будем называть устойчивым (насыщенным).
Эвристическая функция теперь должна быть неотрицательная и выполнять неравенство треугольника, т.е. и для всех и
| Определение: |
Будем называть ключом вершины такую функцию , которая возвращает вектор из 2-ух значений , .
|
Если в конце поиска пути , то мы не смогли найти путь от до на текущей итерации. Но после следующего изменения графа путь вполне может найтись.
Псевдокод
Основная функция, описывающая алгоритм
Main():
{
Initialize();
while (true)
{
ComputeShortestPath();
//В данный момент мы знаем кратчайший путь из в .
Ждем каких-либо изменений графа.
for всех ориентированных ребер с измененными весами:
{
Обновляем результат функции ;
UpdateVertex();
}
}
}
Теперь опишем составные элементы подробнее Функция инициализации исходного графа устанавливает для всех вершин кроме стартовой () значения и равными бесконечности. Для стартовой . Очевидно, что минимальное расстояние от стартовой вершины до самой себя должно быть равным 0, но . Это сделано для того, чтобы стартовая вершина была ненасыщенной и имела право попасть в приоритетную очередь.
Initialize():
{
//Заведем приоритетную очередь , в которую будем помещать вершины. Сортировка будет производиться по функции .
for
U.Insert(; CalcKey());
}
//Функция . Возвращаемые значения сортируются в лексографическом порядке, т.е. сначала , потом CalcKey(s): { return [; ]; }
UpdateVertex(): { if () if () U.Remove(u); if () U.Insert(; CalcKey()); }
// Функция неоднократно перерасчитывает значение у ненасыщенных вершин в неубывающем порядке их ключей. Такой перерасчет значения будем называть расширением вершины. ComputeShortestPath(): { while (U.TopKey() < CalcKey() OR rhs() g()) u = U.Pop(); if (g(u) > rhs(u)) g(u) = rhs(u); for UpdateVertex(s); else g(u) = ; for UpdateVertex(s); }
Таким образом мы описали алгоритм LPA*. Он неоднократно определяет путь между вершинами и , используя при этом данные из предыдущих итераций. Очевидно, что в худшем случае (а именно когда все ребра вокруг текущей вершины изменили свой вес) алгоритм будет работать как последовательные вызовы алгоритма А* за . Улучшим эту оценку с помощью алгоритма D* lite.
Примечание: на практике же такой подход тоже имеет место на плотных графах (или матрицах), так как в среднем дает оценку .
Алгоритм D* (Первая версия)
Пока что был описан только алгоритм LPA*. Он способен неоднократно определять кратчайшее расстояние между начальной и конечной вершинами при любом изменении данного графа. Его первоначальный поиск полностью совпадает с алгоритмом A*, но последующие итерации способны использовать информацию из предыдущих поисков.
Постановка задачи
Теперь на основе LPA* опишем алгоритм D*, который способен определять расстояние между текущей вершиной , в которой, допустим, находится курсор/робот, и конечной вершиной при каждом изменении графа в то время, как наш робот движется вдоль найденного пути.
Описание
Опишем первую версию алгоритма D*. Очевидно, что большинство вершин в процессе движения робота остаются неизменными, поэтому мы можем применить алгоритм LPA*.
Примечание: Большинство функций переходят в данный алгоритм без изменений, поэтому опишем только измененные части.
Для начала мы поменяем направление поиска в графе.
Теперь функция g(s) хранит минимальное известное расстояние от до . Свойства остаются прежними.
Эвристическая функция теперь должна быть неотрицательная и обратно-устойчивая, т.е. и для всех и . Очевидно, что при движении робота изменяется, поэтому данные свойства должны выполняться для всех .
Дополнительное условие выхода также меняется, т.е. при путь не найден на данной итерации. Иначе путь найден и робот может проследовать по нему.
Примечание: Так же следует отметить, что функция Initialize не обязана инициализировать абсолютно все вершины перед стартом алгоритма. Это важно, так как в на практике число вершин может быть огромным и только немногие будут пройдены робот в процессе движения. Так же это дает возможность добавления/удаления ребер без потери устойчивости всех подграфов данного графа.
Псевдокод
При такой постановке задачи псевдокод не сильно меняется. Но функция Main все-таки претерпевает значительные изменения.
CalcKey(s): return [;];
Initialize(): U = ; for U.Insert(; CalcKey());
UpdateVertex(u): if () rhs(u) = if () U.Remove(u); if () U.Insert(u; CalcKey(u));
ComputeShortestPath(): while (U.TopKey() < CalcKey() OR ) u = U.Pop(); if (g(u) > rhs(u)) g(u) = rhs(u); for UpdateVertex(s); else g(u) = ; for UpdateVertex(s);
Main(): Initialize(); ComputeShortestPath(); while () // if () тогда путь на данной итерации не найден. = такая вершина s', что Передвинулись вдоль найденного пути и изменили вершину ; Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним. if (граф изменился) for всех ориентированных ребер с измененными весами: Обновляем результат функции ; UpdateVertex(u); for U.Update(; CalcKey()); ComputeShortestPath();
| Теорема (Свен Кёниг, Об устойчивой насыщенности вершин): |
Функция ComputeShortestPath в данной версии алгоритма расширяет вершину максимум 2 раза, а именно 1 раз, если вершина ненасыщена, и максимум 1 раз, если она переполнена. |
Алгоритм D* (Вторая версия)
Описание
В первой версии алгоритма была серьезная проблема в том, что для каждой вершины в приоритетной очереди нужно было обновлять ключ суммарно за . Это дорогая операция, так как очередь может содержать огромное число вершин. Воспользуемся оригинальным методом поиска и изменим основной цикл, чтобы избежать постоянного перестроения очереди .
Теперь эвристическая функция должна поддерживать неравенство треугольника для всех вершин , т.е. . Так же должно выполняться свойство , где - стоимость перехода по кратчайшему пути из в , при этом и не должны быть обязательно смежными. Такие свойства не противоречат свойствами из первой версии, а лишь усиливают их.
Псевдокод
CalcKey(s): return [;];
Initialize(): U = ; for U.Insert(; CalcKey());
UpdateVertex(u): if () rhs(u) = if () U.Remove(u); if () U.Insert(u; CalcKey(u));
ComputeShortestPath(): while (U.TopKey() < CalcKey() OR ) ; u = U.Pop(); if ( < CalcKey()) U.Insert(;CalcKey()); if (g(u) > rhs(u)) g(u) = rhs(u); for UpdateVertex(s); else g(u) = ; for UpdateVertex(s);
Main(): Initialize(); ComputeShortestPath(); while () // if () тогда путь на данной итерации не найден. = такая вершина s', что Передвинулись вдоль найденного пути и изменили вершину ; Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним. if (граф изменился) ; ; for всех ориентированных ребер с измененными весами: Обновляем результат функции ; UpdateVertex(u); ComputeShortestPath();
Пример работы
| |
|
| Итерации в функции ComputeShortestPath на исходном графе. | Итерации в функции ComputeShortestPath после изменения графа. (Второй вызов функции) |