Разрез, лемма о потоке через разрез — различия между версиями
Martoon (обсуждение | вклад) |
|||
| Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
| − | <b><tex>(s,t)</tex>-разрезом</b> <tex>\langle S,T\rangle</tex> в сети <tex>G</tex> называется пара множеств <tex>S,T</tex>, удоволетворяющих условиям: | + | <b><tex>(s,t)</tex>-разрезом</b> (англ. '''s-t cut''') <tex>\langle S,T\rangle</tex> в сети <tex>G</tex> называется пара множеств <tex>S,T</tex>, удоволетворяющих условиям: |
1) <tex>s\in S, t\in T</tex> | 1) <tex>s\in S, t\in T</tex> | ||
| Строка 22: | Строка 22: | ||
|definition= | |definition= | ||
Поток в разрезе <tex>\langle S,T\rangle</tex> обозначается <tex>f(S,T)</tex> и вычисляется по формуле: <tex>f(S,T)=\sum\limits_{u\in S}\sum\limits_{v\in T}f(u,v)</tex>. | Поток в разрезе <tex>\langle S,T\rangle</tex> обозначается <tex>f(S,T)</tex> и вычисляется по формуле: <tex>f(S,T)=\sum\limits_{u\in S}\sum\limits_{v\in T}f(u,v)</tex>. | ||
| + | }} | ||
| + | |||
| + | {{Определение | ||
| + | |definition= | ||
| + | Минимальным разрезом называется разрез с минимально возможной пропускной способностью | ||
}} | }} | ||
| Строка 62: | Строка 67: | ||
== Литература == | == Литература == | ||
* ''Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд'' '''Алгоритмы: построение и анализ''', 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.) | * ''Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд'' '''Алгоритмы: построение и анализ''', 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.) | ||
| + | |||
| + | == Ссылки == | ||
| + | * [http://ru.wikipedia.org/wiki/Разрез_графа Википедия: Разрез графа] | ||
| + | * [http://en.wikipedia.org/wiki/Cut_(graph_theory) Википедия: Разрез графа (англ.)] | ||
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Задача о максимальном потоке]] | [[Категория:Задача о максимальном потоке]] | ||
Версия 15:35, 6 января 2014
Определение разреза
| Определение: |
| -разрезом (англ. s-t cut) в сети называется пара множеств , удоволетворяющих условиям:
1) 2) 3) |
Поток через разрез
| Определение: |
| Пропускная способность разреза обозначается и вычисляется по формуле: . |
| Определение: |
| Поток в разрезе обозначается и вычисляется по формуле: . |
| Определение: |
| Минимальным разрезом называется разрез с минимально возможной пропускной способностью |
| Лемма: |
Пусть - разрез в . Тогда . |
| Доказательство: |
|
1-е равенство выполняется, так как суммы не пересекаются (); 2-е равенство выполняется из-за антисимметричности (); 3-е равенство выполняется, как и 1-е, из-за непересекающихся сумм; 4-е равенство выполняется из-за сохранения потока. |
| Лемма (закон слабой двойственности потока и разреза): |
Пусть - разрез в . Тогда . |
| Доказательство: |
| , из-за ограничений пропускных способностей (). |
| Лемма: |
Если , то поток - максимален, а разрез - минимален. |
| Доказательство: |
|
Из закона слабой двойственности следует, что для любых двух разрезов и в сети (так как ). Значит, если расположить все величины потоков и разрезов на оси OX, то у потоков с разрезами может быть максимум 1 точка пересечения. Очевидно, что эта точка определяет максимальный поток среди всех потоков и минимальный разрез среди всех разрезов сети . |
Литература
- Кормен, Томас Х., Лейзерсон, Чарльз И., Ривест, Рональд Л., Штайн Клиффорд Алгоритмы: построение и анализ, 2-е издание. Пер. с англ. — М.:Издательский дом "Вильямс", 2010. — 1296 с.: ил. — Парал. тит. англ. — ISBN 978-5-8459-0857-5 (рус.)
