Вероятностное пространство, элементарный исход, событие — различия между версиями
Sultan (обсуждение | вклад) (→Примеры вероятностных пространств) |
Igorjan94 (обсуждение | вклад) м (→Примеры вероятностных пространств) |
||
Строка 29: | Строка 29: | ||
## '''Игральная кость''' <br/> Множество исходов <tex>\Omega = \left\{1,2,3,4,5,6\right\}</tex>. <tex> p(i)= \frac {1}{6}</tex>. Рассмотрим некоторые события этого пространства. <br/> <tex>A=\left\{1,2,3 \right\}</tex> : <tex>p(A)=\frac {1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}</tex>. Вероятность выпадения одного из трех чисел - 1, 2, 3 равна одной второй. <br/> <tex>B=\left\{2,4 \right\}</tex> : <tex>p(B)=\frac {1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}</tex>. Числа 2 или 4 выпадут с вероятностью одна треть. | ## '''Игральная кость''' <br/> Множество исходов <tex>\Omega = \left\{1,2,3,4,5,6\right\}</tex>. <tex> p(i)= \frac {1}{6}</tex>. Рассмотрим некоторые события этого пространства. <br/> <tex>A=\left\{1,2,3 \right\}</tex> : <tex>p(A)=\frac {1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{3}{6}=\frac{1}{2}</tex>. Вероятность выпадения одного из трех чисел - 1, 2, 3 равна одной второй. <br/> <tex>B=\left\{2,4 \right\}</tex> : <tex>p(B)=\frac {1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}</tex>. Числа 2 или 4 выпадут с вероятностью одна треть. | ||
## '''Колода карт''' <br/> <tex>\Omega = \left\{\left \langle i,j\right \rangle| i \in \left\{1..4\right\}; j \in \left\{1..13\right\} \right\}</tex>. Здесь ''i'' - масть, ''j'' - достоинство карты. <br/> Вероятность элементарного исхода этого пространства <tex>p(\left \langle i,j\right \rangle)=\frac {1}{52}</tex>. | ## '''Колода карт''' <br/> <tex>\Omega = \left\{\left \langle i,j\right \rangle| i \in \left\{1..4\right\}; j \in \left\{1..13\right\} \right\}</tex>. Здесь ''i'' - масть, ''j'' - достоинство карты. <br/> Вероятность элементарного исхода этого пространства <tex>p(\left \langle i,j\right \rangle)=\frac {1}{52}</tex>. | ||
− | |||
# '''Бесконечное вероятностное пространство''' <br/> Пусть задано множество следующих элементарных исходов: выпадение орла на <tex>i</tex>-ом подбрасывании честной монеты в первый раз. <br/> Тогда вероятность исхода с номером <tex>i</tex> равна: <tex> p(A_{i}) = \frac {1}{2^{i} } </tex>. <br/> Очевидно, что вероятности этих событий образовывают убывающую геометрическую прогрессию с знаменателем прогрессии равным <tex> \frac {1}{2} </tex>. Найдем сумму этой прогрессии: <tex> \sum \limits_{i=1}^{\infty} p(A_{i}) = \frac { b_{1} } { 1 - q } = \frac { \frac{1}{2} }{ 1 -\frac{1}{2} } = 1</tex>. <br/> Так как сумма всех элементарных исходов равна 1, то это множество является вероятностым пространством. | # '''Бесконечное вероятностное пространство''' <br/> Пусть задано множество следующих элементарных исходов: выпадение орла на <tex>i</tex>-ом подбрасывании честной монеты в первый раз. <br/> Тогда вероятность исхода с номером <tex>i</tex> равна: <tex> p(A_{i}) = \frac {1}{2^{i} } </tex>. <br/> Очевидно, что вероятности этих событий образовывают убывающую геометрическую прогрессию с знаменателем прогрессии равным <tex> \frac {1}{2} </tex>. Найдем сумму этой прогрессии: <tex> \sum \limits_{i=1}^{\infty} p(A_{i}) = \frac { b_{1} } { 1 - q } = \frac { \frac{1}{2} }{ 1 -\frac{1}{2} } = 1</tex>. <br/> Так как сумма всех элементарных исходов равна 1, то это множество является вероятностым пространством. | ||
Версия 22:11, 9 января 2014
Основные определения
Определение: |
Дискретным вероятностным пространством называется пара из некоторого (не более, чем счетного) множества | и функции ( называется множеством элементарных исходов, - элементарным исходом), такая, что .
называют дискретной вероятностной мерой, или дискретной плотностью вероятности.
Определение: |
Множество | называется событием.
, то есть вероятность события равна сумме вероятностей входящих в него элементарных исходов.
Определение: |
Прямым произведением вероятностных пространств ; | и называется такое вероятностное пространство , что
Другими словами, - множество всех пар элементарных исходов из и (т.е. декартово произведение этих множеств).
Примеры вероятностных пространств
- Конечные вероятностные пространства
- Честная монета
Множество исходов , где 0 - выпадает орел, 1 - выпадает решка. .
Рассмотрим все возможные события и их вероятности для этого пространства.
: . То есть вероятность того, что не выпадет ничего, равна нулю.
: . Вероятность того, что выпадет орел, равна одной второй.
: . Вероятность того, что выпадет решка, равна одной второй.
: . Действительно, вероятность того, что выпадет орел или решка, равна единице. - Нечестная монета
Множество исходов здесь такое же, как и в предыдущем пространстве, однако , где . - Игральная кость
Множество исходов . . Рассмотрим некоторые события этого пространства.
: . Вероятность выпадения одного из трех чисел - 1, 2, 3 равна одной второй.
: . Числа 2 или 4 выпадут с вероятностью одна треть. - Колода карт
. Здесь i - масть, j - достоинство карты.
Вероятность элементарного исхода этого пространства .
- Честная монета
- Бесконечное вероятностное пространство
Пусть задано множество следующих элементарных исходов: выпадение орла на -ом подбрасывании честной монеты в первый раз.
Тогда вероятность исхода с номером равна: .
Очевидно, что вероятности этих событий образовывают убывающую геометрическую прогрессию с знаменателем прогрессии равным . Найдем сумму этой прогрессии: .
Так как сумма всех элементарных исходов равна 1, то это множество является вероятностым пространством.
См. так же
1.Вероятностное пространство
2.Дискретное вероятностное пространство
Литература
1. Ширяев А.Н. Вероятность. — М.: МЦНМО, 2004.