Теорема Менгера — различия между версиями
Free0u (обсуждение | вклад) м (→Теорема) |
(Исправление опечаток, пунктуации, улучшение читаемости) |
||
Строка 35: | Строка 35: | ||
{{Теорема | {{Теорема | ||
|about=Менгера о реберной двойственности в ориентированном графе | |about=Менгера о реберной двойственности в ориентированном графе | ||
− | |statement=Между вершинами <tex>u</tex> и <tex>v | + | |statement=Между вершинами <tex>u</tex> и <tex>v</tex> существует <tex>L</tex> реберно непересекающихся путей тогда и только тогда, когда после удаления любых <tex>(L-1)</tex> ребер существует путь из <tex>u</tex> в <tex>v</tex>. |
|proof= | |proof= | ||
:<tex>\Leftarrow</tex> | :<tex>\Leftarrow</tex> | ||
Строка 41: | Строка 41: | ||
:Как и прежде, пусть <tex>u</tex> - источник, а <tex>v</tex> - сток. | :Как и прежде, пусть <tex>u</tex> - источник, а <tex>v</tex> - сток. | ||
:Назначим каждому ребру пропускную способность 1. Тогда существует максимальный поток, целочисленный на каждом ребре (по лемме). | :Назначим каждому ребру пропускную способность 1. Тогда существует максимальный поток, целочисленный на каждом ребре (по лемме). | ||
− | :По теореме Форда-Фалкерсона для такого потока существует разрез с пропускной способностью равной потоку. Удалим в этом разрезе <tex>L-1</tex> ребер, и тогда раз <tex>u</tex> и <tex>v</tex> находятся в разных частях разреза, | + | :По теореме Форда-Фалкерсона для такого потока существует разрез с пропускной способностью равной потоку. Удалим в этом разрезе <tex>L-1</tex> ребер, и тогда, раз <tex>u</tex> и <tex>v</tex> находятся в разных частях разреза и, существует путь из <tex>u</tex> в <tex>v</tex>, то в разрезе останется хотя бы еще одно ребро. Это значит, что пропускная способность разреза и вместе с ним величина потока не меньше <tex>L</tex>. А так как поток целочисленный, то это и означает, что <tex>\exists L</tex> реберно непересекающихся путей. |
:<tex>\Rightarrow</tex> | :<tex>\Rightarrow</tex> | ||
− | :<tex>\exists L</tex> реберно непересекающихся путей, а значит удалив | + | :<tex>\exists L</tex> реберно непересекающихся путей, а значит, удалив любые <tex>L-1</tex> ребер хотя бы один путь останется не тронутым (принцип Дирихле). Это и означает, что существует путь из <tex>u</tex> в <tex>v</tex>. |
}} | }} | ||
{{Теорема | {{Теорема | ||
|about=Менгера о вершинной двойственности в ориентированном графе | |about=Менгера о вершинной двойственности в ориентированном графе | ||
− | |statement=Между вершинами <tex>u</tex> и <tex>v | + | |statement=Между вершинами <tex>u</tex> и <tex>v</tex> существует <tex>L</tex> вершинно непересекающихся путей тогда и только тогда, когда после удаления любых <tex>(L-1)</tex> вершин существует путь из <tex>u</tex> в <tex>v</tex>. |
|proof= | |proof= | ||
Строка 56: | Строка 56: | ||
:[[Файл:Menger-vertex.JPG]] | :[[Файл:Menger-vertex.JPG]] | ||
− | :''(все входящие ребра заходят в | + | :''(все входящие ребра заходят в левую вершину, исходящие выходят из правой. между двумя новыми вершинами добавляем ребро)'' |
:Теперь задача практически сведена к первой теореме. | :Теперь задача практически сведена к первой теореме. | ||
:Необходимо лишь отметить, что если в старом графе пути вершинно пересекаются, то в новом графе пути необходимо реберно пересекаются и наоборот. | :Необходимо лишь отметить, что если в старом графе пути вершинно пересекаются, то в новом графе пути необходимо реберно пересекаются и наоборот. | ||
− | :Кроме того, предложение "удалить в исходном графе <tex> | + | :Кроме того, предложение "удалить в исходном графе любые <tex>L</tex> вершин" можно заменять на "в новом графе можно удалить любые <tex>L</tex> ребер" (достаточно выбирать вершины на концах этих ребер). Можно заменять и обратно, если учесть, что можно удалять ребра между парой вершин, которые раньше были одним целым. |
}} | }} | ||
<includeonly> | <includeonly> |
Версия 08:13, 13 января 2014
Теорема Менгера представляет собой группу теорем, связывающих такие понятия на графах как k-связность и количество непересекающихся путей относительно двух выделенных вершин. Возникают различные варианты очень похожих друг на друга по формулировке теорем в зависимости от того, рассматриваем ли мы ситуацию в ориентированном или неориентированном графе, и подразумеваем ли реберную k-связность и реберно непересекающиеся пути или же вершинную k-связность и вершинно непересекающиеся пути.
Подготовка к доказательству
Для доказательства мы будем пользоваться развитой раннее теорией потоков. Кроме базовых определений нам потребуется понятие остаточной сети (иначе - дополнительной сети), а также теорема Форда-Фалкерсона.
Кроме того, потребуется лемма о целочисленности потока, которую сейчас и докажем:
Лемма (о целочисленности потока): |
Если пропускные способности всех ребер целочисленные (сеть целочислена), то существует максимальный поток, целочисленный на каждом ребре. |
Доказательство: |
|
И, наконец, сделаем немного более осознаным в общем-то и так интуитивно-понятное утверждение:
Утверждение: |
Если в сети, где все пропускные способности ребер равны 1, существует целочисленный поток величиной то существует и реберно непересекающихся путей. |
|
Теорема
Теперь сама теорема будет тривиальным следствием. В начале сформулируем и докажем реберную версию для случая ориентированного графа.
Теорема (Менгера о реберной двойственности в ориентированном графе): |
Между вершинами и существует реберно непересекающихся путей тогда и только тогда, когда после удаления любых ребер существует путь из в . |
Доказательство: |
|
Теорема (Менгера о вершинной двойственности в ориентированном графе): |
Между вершинами и существует вершинно непересекающихся путей тогда и только тогда, когда после удаления любых вершин существует путь из в . |
Доказательство: |
|
Смотри также
Литература
- Ловас Л., Пламмер М. Прикладные задачи теории графов. Теория паросочетаний в математике, физике, химии 1998. 656 с. ISBN 5-03-002517-0 (глава 2.4 стр. 117)