Теорема Менгера — различия между версиями
Filchenko (обсуждение | вклад) (утверждение 2) |
Filchenko (обсуждение | вклад) (разделяющий набор) |
||
Строка 5: | Строка 5: | ||
Наименьшее число вершин, разделяющих две несмежные вершины s и t, равно наибольшему числу непересекающихся простых (s-t) цепей | Наименьшее число вершин, разделяющих две несмежные вершины s и t, равно наибольшему числу непересекающихся простых (s-t) цепей | ||
|proof= | |proof= | ||
+ | {{Определение | ||
+ | statement= | ||
+ | Множество S вершин, ребер или вершин и ребер разделяет u и v, если u и v принадлежат различным компонентам графа <math>G-S</math> | ||
+ | }} | ||
+ | |||
Очевидно, что если k вершин разделяют s и t, то сущесвует не более k непересекающихся простых (s-t) цепей. | Очевидно, что если k вершин разделяют s и t, то сущесвует не более k непересекающихся простых (s-t) цепей. | ||
Теперь покажем, что k вершин графа разделяют s и t, существует k непересекающихся простых (s-t) цепей. Для k=1 это очевидно. | Теперь покажем, что k вершин графа разделяют s и t, существует k непересекающихся простых (s-t) цепей. Для k=1 это очевидно. | ||
Строка 30: | Строка 35: | ||
любой набор W, содержащий h вершин и разделяющий s и t является смежным с s или t | любой набор W, содержащий h вершин и разделяющий s и t является смежным с s или t | ||
|proof= | |proof= | ||
− | Пусть W - произвольный набор h вершин, разделяющих s и t в G. Цепь, соединяющую s с некоторой вершиной <math>w_i \in W</math> и не содержащую других вершин из W будем называть (s-W) цепью. Аналогично назовем (W-t) цепь. Обозначим наборы всех (s-W) и (W-t) цепей <math>P_s</math> и <math>P_t</math> соответственно.Тогда каждая (s-t) цепь начинается с элемента из <math>P_s</math> и заканчивается элементом из <math>P_t</math>, поскольку любая цепь содержит вершину из W. Общие вершины цепей из <math>P_s</math> и <math>P_t</math> принадлежат набору W, так как по крайней мере одна цепь из каждого набора <math>P_s</math> и <math>P_t</math> содержит (любую) вершину <math>w_i</math>, и если бы существовала некоторая вершина, не принадлежащая набору W, но содержащаяся сразу и в (s-W) и в (W-t) цепи, то нашлась бы (s-t) цепь, не имеющая вершин из W. Наконец, выполняется либо равенство <math>P_s-W={s}</math>, либо равенство <math>P_t - W={t}</math>, поскольку в противном случае либо <math>P_s</math> вместе с ребрами <math>{w_1t,w_2t...}</math>, либо <math>P_t</math> вместе с ребрами <math>{sw_1,sw_2...}</math> образуют связные графы с меньшим числом вершин, чем у G, в которых s и t не смежны, и, следовательно, в каждом из них имеется h непересекающихся (s-t) цепей. Объединяя (s-W) и (W-t) части этих цепей, образуем в графе G h непересекающихся (s-t) цепей. Мы пришли к противоречию. Утверждение доказано. | + | Пусть W - произвольный набор h вершин, разделяющих s и t в G. Цепь, соединяющую s с некоторой вершиной <math>w_i \in W</math> и не содержащую других вершин из W будем называть (s-W) цепью. Аналогично назовем (W-t) цепь. Обозначим наборы всех (s-W) и (W-t) цепей <math>P_s</math> и <math>P_t</math> соответственно.Тогда каждая (s-t) цепь начинается с элемента из <math>P_s</math> и заканчивается элементом из <math>P_t</math>, поскольку любая цепь содержит вершину из W. Общие вершины цепей из <math>P_s</math> и <math>P_t</math> принадлежат набору W, так как по крайней мере одна цепь из каждого набора <math>P_s</math> и <math>P_t</math> содержит (любую) вершину <math>w_i</math>, и если бы существовала некоторая вершина, не принадлежащая набору W, но содержащаяся сразу и в (s-W) и в (W-t) цепи, то нашлась бы (s-t) цепь, не имеющая вершин из W. Наконец, выполняется либо равенство <math>P_s-W={s}</math>, либо равенство <math>P_t - W={t}</math>, поскольку в противном случае либо <math>P_s</math> вместе с ребрами <math>\{w_1t,w_2t...\}</math>, либо <math>P_t</math> вместе с ребрами <math>\{sw_1,sw_2...\}</math> образуют связные графы с меньшим числом вершин, чем у G, в которых s и t не смежны, и, следовательно, в каждом из них имеется h непересекающихся (s-t) цепей. Объединяя (s-W) и (W-t) части этих цепей, образуем в графе G h непересекающихся (s-t) цепей. Мы пришли к противоречию. Утверждение доказано. |
}} | }} | ||
− | Пусть <math>P={s, u_1, u_2 ... t}</math> - кратчайшая (s-t) цепь в G, <math>u_1u_2=x</math> Заметим, что из(I) <math>u_1 <> t</math> Образуем множество <math>S(x)={v_1, ... , v_{h-1}}</math>, разделяющее в <math>G-x</math> вершины s и t. Из (I) следует, что <math>u_1t \notin G</math> Используя (II) и беря <math>W=S(x)\cup {u_1}</math>, получаем <math>\forall i sv_i \in G</math> Таким образом в силу (I) <math>\forall v_it \notin G</math>. Однако, если выбрать <math>W=S(x) \cup {u_2}</math>, то в силу (II) получим <math>su_2 \in G</math>, что противоречит выбору P как кратчайшей (s-t) цепи. Из полученного противоречия следует, что графа G, удовлетворяющего указанным условиям не существует, а значит не существует и графа F, для которого теорема не верна | + | Пусть <math>P=\{s, u_1, u_2 ... t\}</math> - кратчайшая (s-t) цепь в G, <math>u_1u_2=x</math> Заметим, что из(I) <math>u_1 <> t</math> Образуем множество <math>S(x)=\{v_1, ... , v_{h-1}\}</math>, разделяющее в <math>G-x</math> вершины s и t. Из (I) следует, что <math>u_1t \notin G</math> Используя (II) и беря <math>W=S(x)\cup {u_1}</math>, получаем <math>\forall i sv_i \in G</math> Таким образом в силу (I) <math>\forall v_it \notin G</math>. Однако, если выбрать <math>W=S(x) \cup {u_2}</math>, то в силу (II) получим <math>su_2 \in G</math>, что противоречит выбору P как кратчайшей (s-t) цепи. Из полученного противоречия следует, что графа G, удовлетворяющего указанным условиям не существует, а значит не существует и графа F, для которого теорема не верна |
Строка 50: | Строка 55: | ||
Пусть G - конечный, неориентированный граф, <math>\lambda(G) = k</math> <math>\Leftrightarrow</math> для всех пар вершин <math>x, y \backepsilon G</math> существует k реберно непересекающихся путей из x в y | Пусть G - конечный, неориентированный граф, <math>\lambda(G) = k</math> <math>\Leftrightarrow</math> для всех пар вершин <math>x, y \backepsilon G</math> существует k реберно непересекающихся путей из x в y | ||
|proof= | |proof= | ||
− | + | Аналогично вершинному случаю | |
}} | }} |
Версия 05:46, 11 октября 2010
Теорема (Теорема Менгера для k связности): | ||||||||||||
Наименьшее число вершин, разделяющих две несмежные вершины s и t, равно наибольшему числу непересекающихся простых (s-t) цепей | ||||||||||||
Доказательство: | ||||||||||||
{{Определение statement= Множество S вершин, ребер или вершин и ребер разделяет u и v, если u и v принадлежат различным компонентам графа }}Очевидно, что если k вершин разделяют s и t, то сущесвует не более k непересекающихся простых (s-t) цепей. Теперь покажем, что k вершин графа разделяют s и t, существует k непересекающихся простых (s-t) цепей. Для k=1 это очевидно. Пусть, для некоторого это неверно. Возьмем h - наименьшее такое k и F - граф с наименьшим числом вершин, для которого при выбранном h теорема не верна. Будем удалять из F ребра, пока не получим G такой, что в G s и t разделяют h вершин, а в вершина, где x - произвольное ребро графа G.
| ||||||||||||
Теорема (Теорема Менгера для k связности (альтернативная формулировка)): |
Две несмежные вершины k-отделимы тогда и только тогда, когда они k-соединимы |
Теорема (Теорема Менгера для k-реберной связности): |
Пусть G - конечный, неориентированный граф, для всех пар вершин существует k реберно непересекающихся путей из x в y |
Доказательство: |
Аналогично вершинному случаю |