Теорема Менгера — различия между версиями
(фикс форматирования) |
Filchenko (обсуждение | вклад) м (грамматика) |
||
Строка 5: | Строка 5: | ||
Наименьшее число вершин, разделяющих две несмежные вершины s и t, равно наибольшему числу непересекающихся простых (s-t) цепей | Наименьшее число вершин, разделяющих две несмежные вершины s и t, равно наибольшему числу непересекающихся простых (s-t) цепей | ||
|proof= | |proof= | ||
− | |||
− | |||
− | |||
− | |||
− | |||
Очевидно, что если k вершин разделяют s и t, то сущесвует не более k непересекающихся простых (s-t) цепей. | Очевидно, что если k вершин разделяют s и t, то сущесвует не более k непересекающихся простых (s-t) цепей. | ||
Строка 22: | Строка 17: | ||
I | I | ||
|statement= | |statement= | ||
− | + | В графе G нет вершин, смежных одновременно с s и t | |
|proof= | |proof= | ||
Если в G есть вершина w, смежная как с s, так и с t, то в графе <math>G-w</math> для разделения s и t требуется <math>h - 1</math> непересекающихся (s-t) цепей. Добавляя w, получаем в графе G h непересекающихся (s-t) цепей, что противоречит предположению о графе F | Если в G есть вершина w, смежная как с s, так и с t, то в графе <math>G-w</math> для разделения s и t требуется <math>h - 1</math> непересекающихся (s-t) цепей. Добавляя w, получаем в графе G h непересекающихся (s-t) цепей, что противоречит предположению о графе F | ||
Строка 31: | Строка 26: | ||
II | II | ||
|statement= | |statement= | ||
− | + | Любой набор W, содержащий h вершин и разделяющий s и t является смежным с s или t | |
|proof= | |proof= | ||
Пусть W - произвольный набор h вершин, разделяющих s и t в G. Цепь, соединяющую s с некоторой вершиной <math>w_i \in W</math> и не содержащую других вершин из W будем называть (s-W) цепью. Аналогично назовем (W-t) цепь. Обозначим наборы всех (s-W) и (W-t) цепей <math>P_s</math> и <math>P_t</math> соответственно.Тогда каждая (s-t) цепь начинается с элемента из <math>P_s</math> и заканчивается элементом из <math>P_t</math>, поскольку любая цепь содержит вершину из W. Общие вершины цепей из <math>P_s</math> и <math>P_t</math> принадлежат набору W, так как по крайней мере одна цепь из каждого набора <math>P_s</math> и <math>P_t</math> содержит (любую) вершину <math>w_i</math>, и если бы существовала некоторая вершина, не принадлежащая набору W, но содержащаяся сразу и в (s-W) и в (W-t) цепи, то нашлась бы (s-t) цепь, не имеющая вершин из W. Наконец, выполняется либо равенство <math>P_s-W={s}</math>, либо равенство <math>P_t - W={t}</math>, поскольку в противном случае либо <math>P_s</math> вместе с ребрами <math>\{w_1t,w_2t...\}</math>, либо <math>P_t</math> вместе с ребрами <math>\{sw_1,sw_2...\}</math> образуют связные графы с меньшим числом вершин, чем у G, в которых s и t не смежны, и, следовательно, в каждом из них имеется h непересекающихся (s-t) цепей. Объединяя (s-W) и (W-t) части этих цепей, образуем в графе G h непересекающихся (s-t) цепей. Мы пришли к противоречию. Утверждение доказано. | Пусть W - произвольный набор h вершин, разделяющих s и t в G. Цепь, соединяющую s с некоторой вершиной <math>w_i \in W</math> и не содержащую других вершин из W будем называть (s-W) цепью. Аналогично назовем (W-t) цепь. Обозначим наборы всех (s-W) и (W-t) цепей <math>P_s</math> и <math>P_t</math> соответственно.Тогда каждая (s-t) цепь начинается с элемента из <math>P_s</math> и заканчивается элементом из <math>P_t</math>, поскольку любая цепь содержит вершину из W. Общие вершины цепей из <math>P_s</math> и <math>P_t</math> принадлежат набору W, так как по крайней мере одна цепь из каждого набора <math>P_s</math> и <math>P_t</math> содержит (любую) вершину <math>w_i</math>, и если бы существовала некоторая вершина, не принадлежащая набору W, но содержащаяся сразу и в (s-W) и в (W-t) цепи, то нашлась бы (s-t) цепь, не имеющая вершин из W. Наконец, выполняется либо равенство <math>P_s-W={s}</math>, либо равенство <math>P_t - W={t}</math>, поскольку в противном случае либо <math>P_s</math> вместе с ребрами <math>\{w_1t,w_2t...\}</math>, либо <math>P_t</math> вместе с ребрами <math>\{sw_1,sw_2...\}</math> образуют связные графы с меньшим числом вершин, чем у G, в которых s и t не смежны, и, следовательно, в каждом из них имеется h непересекающихся (s-t) цепей. Объединяя (s-W) и (W-t) части этих цепей, образуем в графе G h непересекающихся (s-t) цепей. Мы пришли к противоречию. Утверждение доказано. |
Версия 07:21, 11 октября 2010
Теорема (Теорема Менгера для k связности): | ||||||||||||
Наименьшее число вершин, разделяющих две несмежные вершины s и t, равно наибольшему числу непересекающихся простых (s-t) цепей | ||||||||||||
Доказательство: | ||||||||||||
Очевидно, что если k вершин разделяют s и t, то сущесвует не более k непересекающихся простых (s-t) цепей. Теперь покажем, что если k вершин графа разделяют s и t, то существует k непересекающихся простых (s-t) цепей. Для k=1 это очевидно. Пусть, для некоторого это неверно. Возьмем h - наименьшее такое k и F - граф с наименьшим числом вершин, для которого при выбранном h теорема не верна. Будем удалять из F ребра, пока не получим G такой, что в G s и t разделяют h вершин, а в вершина, где x - произвольное ребро графа G.
| ||||||||||||
Теорема (Теорема Менгера для k связности (альтернативная формулировка)): |
Две несмежные вершины k-отделимы тогда и только тогда, когда они k-соединимы |
Теорема (Теорема Менгера для k-реберной связности): |
Пусть G - конечный, неориентированный граф, для всех пар вершин существует k реберно непересекающихся путей из x в y |
Доказательство: |
Аналогично теореме для вершинной связности. |