Алгоритм МакКрейта — различия между версиями
Genyaz (обсуждение | вклад) (Добавлена историческая справка) |
Genyaz (обсуждение | вклад) м |
||
Строка 6: | Строка 6: | ||
== Теоретическое обоснование == | == Теоретическое обоснование == | ||
− | Заметим, что если два суффикса имеют <tex>lcp</tex> (''largest common prefix'') общих символов, то в построенном суффиксном дереве они будут иметь [[Сведение задачи LCA к задаче RMQ| наименьшего общего предка]] на этой глубине. Будем рассматривать суффиксы в порядке убывания длины, тогда имеет смысл узнавать наибольшее <tex>lcp</tex> с новым суффиксом среди всех суффиксов, добавленных раньше. Обозначим как <tex>head_i</tex> {{---}} максимальный префикс <tex>s[j.. | + | Рассмотрим строку <tex>s</tex> длины <tex>n</tex>, которая заканчивается специальным символом, не встречающимся больше в строке. |
+ | Заметим, что если два суффикса имеют <tex>lcp</tex> (''largest common prefix'') общих символов, то в построенном суффиксном дереве они будут иметь [[Сведение задачи LCA к задаче RMQ| наименьшего общего предка]] на этой глубине. Будем рассматривать суффиксы в порядке убывания длины, тогда имеет смысл узнавать наибольшее <tex>lcp</tex> с новым суффиксом среди всех суффиксов, добавленных раньше. Обозначим как <tex>head_i</tex> {{---}} максимальный префикс <tex>s[j..n]</tex> и <tex>s[i..n]</tex> среди всех <tex>j < i</tex>. | ||
Пусть мы знаем <tex>head_i</tex> и место в дереве, которое ему соответствует. Если позиция находится на ребре, разрежем его, а потом добавим новую вершину. Считать <tex>head_i</tex> по определению было бы очень затруднительно, но существует способ значительно сократить вычисления. | Пусть мы знаем <tex>head_i</tex> и место в дереве, которое ему соответствует. Если позиция находится на ребре, разрежем его, а потом добавим новую вершину. Считать <tex>head_i</tex> по определению было бы очень затруднительно, но существует способ значительно сократить вычисления. | ||
Строка 15: | Строка 16: | ||
|proof= | |proof= | ||
* При <tex>h=0</tex>, очевидно, пустая строка является префиксом любой другой. | * При <tex>h=0</tex>, очевидно, пустая строка является префиксом любой другой. | ||
− | * Пусть <tex>h > 0</tex>. Из определения <tex>head_i</tex> существует суффикс <tex>s[j.. | + | * Пусть <tex>h > 0</tex>. Из определения <tex>head_i</tex> существует суффикс <tex>s[j..n]</tex>, имеющий <tex>h</tex> общих символов с <tex>s[i..n]</tex>. Тогда <tex>s[j+1..n]</tex> будет иметь с <tex>s[i+1..n]</tex> общий префикс длины <tex>h-1</tex>. Поскольку любой общий префикс будет по определению также являться и префиксом <tex>head_{i+1}</tex>, получаем искомое утверждение. |
}} | }} | ||
Строка 44: | Строка 45: | ||
|statement=Инвариант алгоритма сохраняется | |statement=Инвариант алгоритма сохраняется | ||
|proof=Инвариант мог бы нарушиться только в случае, если бы не существовало вершины в суффиксной ссылке для <tex>head_{i-1}</tex>, но мы продолжили бы сканирование по ребру дальше и получили две вершины <tex>head_{i-1}.suf, head_i</tex> с неопределенными суффиксными ссылками. | |proof=Инвариант мог бы нарушиться только в случае, если бы не существовало вершины в суффиксной ссылке для <tex>head_{i-1}</tex>, но мы продолжили бы сканирование по ребру дальше и получили две вершины <tex>head_{i-1}.suf, head_i</tex> с неопределенными суффиксными ссылками. | ||
− | Покажем, что это невозможно. Рассмотрим, что значит, что <tex>head_{i-1}.suf</tex> остановилась посередине ребра. Это означает, что все суффиксы <tex>s[j.. | + | Покажем, что это невозможно. Рассмотрим, что значит, что <tex>head_{i-1}.suf</tex> остановилась посередине ребра. Это означает, что все суффиксы <tex>s[j..n], j < i - 1</tex>, которые дошли до этого места, имеют совпадающие следующие символы, по определению <tex>head_{i-1}</tex> отличающиеся от символа суффикса <tex>s[i - 1..n]</tex>. Тогда и <tex>s[i..n]</tex> должен отличаться в этом символе, значит <tex>head_i = head_{i-1}.suf</tex>. |
}} | }} | ||
Версия 16:40, 3 мая 2014
Алгоритм МакКрейта — алгоритм построения суффиксного дерева для заданной строки за линейное время. Отличается от алгоритма Укконена тем, что добавляет суффиксы в порядке убывания длины.
Содержание
Историческая справка
Первым оптимальным по времени был алгоритм, предложенный Вайнером в 1973 году. Идея алгоритма была в нахождении первых символов суффикса, которые находились в уже построенном дереве. Суффиксы просматривались от самого короткого к самому длинному, а для быстрого поиска использовались по два массива размера алфавита на каждую вершину, что затрудняло как понимание алгоритма, так и его реализацию и эффективность, особенно в плане занимаемой памяти. МакКрейт в 1976 году предложил свой алгоритм, в котором порядок добавления суффиксов заменен на обратный, а для быстрого вычисления места, откуда нужно продолжить построение нового суффикса, достаточно суффиксной ссылки в каждой вершине. В 1995 году Укконен представил свою версию алгоритма, которая считается наиболее простой для понимания, а также, в отличие от алгоритмов Вейнера и МакКрейта, является online алгоритмом, способным строить неявное суффиксное дерево по мере прочтения строки, а затем превратить его в настоящее.
Теоретическое обоснование
Рассмотрим строку наименьшего общего предка на этой глубине. Будем рассматривать суффиксы в порядке убывания длины, тогда имеет смысл узнавать наибольшее с новым суффиксом среди всех суффиксов, добавленных раньше. Обозначим как — максимальный префикс и среди всех .
длины , которая заканчивается специальным символом, не встречающимся больше в строке. Заметим, что если два суффикса имеют (largest common prefix) общих символов, то в построенном суффиксном дереве они будут иметьПусть мы знаем
и место в дереве, которое ему соответствует. Если позиция находится на ребре, разрежем его, а потом добавим новую вершину. Считать по определению было бы очень затруднительно, но существует способ значительно сократить вычисления.Лемма: |
Пусть , тогда — префикс . |
Доказательство: |
|
Если нам известны суффиксные ссылки
для каждой вершины , мы можем быстро перейти от позиции к ее суффиксу и продолжить сравнение символов оттуда. Если бы новая позиция всегда оказывалась существующей вершиной построенного дерева, этот алгоритм бы уже работал, но в реальности можно оказаться на середине ребра, для которой суффиксная ссылка неизвестна. Для нахождения ее суффиксной ссылки на следующей итерации мы сначала перейдем к предку, пройдем по суффиксной ссылке, а уже затем будем продолжать сравнение.Алгоритм
Для удобства реализации вместе с корнем
создадим вспомогательную вершину , обладающую свойствами:- Для любого символа из вершины есть ребро в .
Будем поддерживать инвариант:
- Для всех вершин, кроме, возможно, последней добавленной , известны суффиксные ссылки.
- Суффиксная ссылка всегда ведет в вершину, а не в середину ребра.
При добавлении каждого следующего суффикса будем выполнять следующие шаги:
- Если суффиксная ссылка
- Поднимемся вверх к ее предку;
- Пройдем по суффиксной ссылке;
- Спустимся вниз на столько символов, сколько мы прошли вверх к предку (fast scanning).
- Если мы оказались посередине ребра, разрежем его и добавим вершину.
- Установим суффиксную ссылку для
не определена:
- Иначе просто пройдем по суффиксной ссылке.
- Будем идти по дереву вниз, пока либо не будет перехода по символу, либо очередной символ на ребре не совпадет с символом нового суффикса (slow scanning)
- Добавим ребро/разрежем существующее, запомним новую позицию и добавим оставшуюся часть суффикса в качестве листа.
Утверждение: |
Инвариант алгоритма сохраняется |
Инвариант мог бы нарушиться только в случае, если бы не существовало вершины в суффиксной ссылке для Покажем, что это невозможно. Рассмотрим, что значит, что , но мы продолжили бы сканирование по ребру дальше и получили две вершины с неопределенными суффиксными ссылками. остановилась посередине ребра. Это означает, что все суффиксы , которые дошли до этого места, имеют совпадающие следующие символы, по определению отличающиеся от символа суффикса . Тогда и должен отличаться в этом символе, значит . |
Асимптотическая оценка
В приведенном алгоритме используется константное число операций на добавление одного суффикса, не считая slow scanning и fast scanning.
Slow scanning делает
операций, что суммарно дает операций.Fast scanning работает с целыми ребрами, поэтому будем использовать в качестве потенциала глубину в вершинах. Из структуры суффиксного дерева мы знаем, что суффиксная ссылка может уменьшить глубину вершины не более, чем на , так что мы на каждой итерации поднимаемся не более, чем на — один раз к предку, а потом по суффиксной ссылке, что составляет за весь алгоритм. Соответственно, спустимся мы тоже суммарно раз, так как и максимальная глубина составляет .
Итоговая асимптотика алгоритма —
.Сравнение с другими алгоритмами
В сравнении с алгоритмом Вайнера:
- Преимущества: каждая вершина хранит только суффиксную ссылку, а не массивы размера алфавита.
- Недостатки: нет.
В сравнении с алгоритмом Укконена:
- Преимущества: мы строим суффиксное дерево в явной форме, что может облегчить понимание алгоритма.
- Недостатки: является offline алгоритмом, то есть требует для начала работы всю строку целиком.
Источники
- Suffix tree - Wikipedia
- Gusfield, Dan , Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology // Cambridge University Press, — 1999. — ISBN: 0-521-58519-8
- C. N. Storm, McCreight's suffix tree construction algorithm