Алгоритм Кнута-Морриса-Пратта — различия между версиями
Neuner (обсуждение | вклад) (→Описание алгоритма) |
Neuner (обсуждение | вклад) (→Описание алгоритма) |
||
Строка 4: | Строка 4: | ||
Дана цепочка <tex>T</tex> и образец <tex>P</tex>. Требуется найти все позиции, начиная с которых <tex>P</tex> входит в <tex>T</tex>. | Дана цепочка <tex>T</tex> и образец <tex>P</tex>. Требуется найти все позиции, начиная с которых <tex>P</tex> входит в <tex>T</tex>. | ||
<br> | <br> | ||
− | Построим строку <tex>S = P\#T</tex>, где <tex>\#</tex> — любой символ, не входящий в алфавит <tex>P</tex> и <tex>T</tex>. Посчитаем на ней [[Префикс-функция|префикс-функцию]] <tex>\pi()</tex>. Благодаря разделительному символу <tex>\#</tex>, выполняется <tex>\forall i: \pi(i) \le |P|</tex>. Заметим, что по определению [[Префикс-функция|префикс-функции]] при <tex>i > |P|</tex> и <tex>\pi(i) = |P|</tex> подстроки длины <tex>P</tex>, начинающиеся с позиций <tex>0</tex> и <tex>i - |P| + 1</tex>, совпадают. Соберем все такие позиции <tex>i - |P| + 1</tex> строки <tex>S</tex>, вычтем из каждой позиции <tex>|P| + 1</tex>, это и будет ответ. | + | Построим строку <tex>S = P\#T</tex>, где <tex>\#</tex> — любой символ, не входящий в алфавит <tex>P</tex> и <tex>T</tex>. Посчитаем на ней [[Префикс-функция|префикс-функцию]] <tex>\pi()</tex>. Благодаря разделительному символу <tex>\#</tex>, выполняется <tex>\forall i: \pi(i) \le |P|</tex>. Заметим, что по определению [[Префикс-функция|префикс-функции]] при <tex>i > |P|</tex> и <tex>\pi(i) = |P|</tex> подстроки длины <tex>P</tex>, начинающиеся с позиций <tex>0</tex> и <tex>i - |P| + 1</tex>, совпадают. Соберем все такие позиции <tex>i - |P| + 1</tex> строки <tex>S</tex>, вычтем из каждой позиции <tex>|P| + 1</tex>, это и будет ответ. Другими словами, если в какой-то позиции <tex>i, \pi(i)=|P|</tex>, то в этой позиции начинается очередное вхождение образца в цепочку. |
<br> | <br> | ||
[[Файл:kmp_pict2.png|640px]] | [[Файл:kmp_pict2.png|640px]] |
Версия 18:55, 30 мая 2014
Алгоритм Кнута — Морриса — Пратта (англ. Knuth–Morris–Pratt algorithm) — алгоритм поиска подстроки в строке.
Описание алгоритма
Дана цепочка
Построим строку , где — любой символ, не входящий в алфавит и . Посчитаем на ней префикс-функцию . Благодаря разделительному символу , выполняется . Заметим, что по определению префикс-функции при и подстроки длины , начинающиеся с позиций и , совпадают. Соберем все такие позиции строки , вычтем из каждой позиции , это и будет ответ. Другими словами, если в какой-то позиции , то в этой позиции начинается очередное вхождение образца в цепочку.
Псевдокод
Пусть
, .count = 0
for (i = 0 .. (t - 1))
if (
(p + i + 1) == p)
answer[count++] = i + 1 - p
Время работы
Префикс-функция от строки
строится за . Проход цикла по строке содержит итераций. Итого, время работы алгоритма оценивается как .Оценка по памяти
Предложенная реализация имеет оценку по памяти
. Оценки можно добиться за счет незапоминания значений для позиций в , меньших (т.е. до начала цепочки ).Источники
- Википедия — Алгоритм Кнута — Морриса — Пратта
- Wikipedia — Knuth–Morris–Pratt algorithm
- Кормен, Т., Лейзерсон, Ч., Ривест, Р., Штайн — Алгоритмы: построение и анализ / пер. с англ. — изд. 2-е — М.: Издательский дом «Вильямс», 2009. — с.1036. — ISBN 978-5-8459-0857-5.