Теорема о базах — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м
м
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 +
|id=definition
 
|definition=
 
|definition=
 
'''База''' — максимальное по включению независимое множество. То есть
 
'''База''' — максимальное по включению независимое множество. То есть

Версия 23:15, 4 июня 2014

Определение:
База — максимальное по включению независимое множество. То есть [math]B \in I[/math] — база, если [math] \forall A \in I : B \subseteq A \Rightarrow A = B [/math].


Теорема (о равномощности баз):
Пусть [math]B_1[/math] и [math]B_2[/math] — базы матроида [math]M[/math]. Тогда [math]|B_1| = |B_2|[/math].
Доказательство:
[math]\triangleright[/math]

Доказательство от противного. Пусть [math]|B_1| \gt |B_2|[/math]. Тогда по третьей аксиоме определения матроида [math]\exists x \in B_1 \setminus B_2[/math] такой, что [math]B_2 \cup {x} \in I[/math]. То есть [math]B_2[/math] — не максимальное по включению независимое множество, что противоречит определению базы.

Случай [math]|B_2| \gt |B_1|[/math] разбирается аналогично.
[math]\triangleleft[/math]
Теорема (о базах):
Пусть [math]M[/math] — матроид и [math]B_s[/math] — семейство его баз. Тогда:

1) [math]B_s \ne \varnothing[/math];
2) если [math]B_1, B_2 \in B_s[/math] и [math]B_1 \ne B_2[/math], то [math]B_1 \nsubseteq B_2[/math] и [math]B_2 \nsubseteq B_1[/math];

3) если [math]B_1, B_2 \in B_s[/math], то для [math]\forall b_1 \in B_1 \: \exists b_2 \in B_2 [/math] такой, что [math](B_1 \setminus b_1) \cup b_2 \in B_s[/math].
Доказательство:
[math]\triangleright[/math]

1) Следует из первой аксиомы определения матроида.
2) Из теоремы о равномощности баз следует, что [math]B_1 \neg \subset B_2[/math] и [math]B_2 \neg \subset B_1[/math]. А с условием [math]B_1 \ne B_2[/math] получаем [math]B_1 \nsubseteq B_2[/math] и [math]B_2 \nsubseteq B_1[/math].
3) По второй аксиоме определения матроида [math]\forall b_1 \in B_1[/math] верно, что [math](B_1 \setminus b_1) \in I[/math].
По теореме о равномощности баз [math]|B_2|\gt |B_1 \setminus b_1|[/math].
Значит по третьей аксиоме определения матроида [math]\exists b_2 \in B_2 [/math] такой, что [math](B_1 \setminus b_1) \cup b_2 \in I[/math].

А так как [math]|(B_1 \setminus b_1) \cup b_2| = |B_1| \:[/math] и [math]B_1[/math] — база, то [math](B_1 \setminus b_1) \cup b_2 \in B_s[/math], что и требовалось доказать.
[math]\triangleleft[/math]