Хроматическое число планарного графа — различия между версиями
Martoon (обсуждение | вклад) м (→Раскраска в 5 цветов) |
Martoon (обсуждение | вклад) м (→Источники) |
||
Строка 61: | Строка 61: | ||
== Источники == | == Источники == | ||
− | # [http://matica.org.ua/lektsii-po-diskretnoy-matematike/3-08-6-raskraski-planarnich-grafov Раскраска планарного графа | + | # [http://matica.org.ua/lektsii-po-diskretnoy-matematike/3-08-6-raskraski-planarnich-grafov matica.org {{---}} Раскраска планарного графа ] |
− | # [ | + | # [[wikipedia:ru:Проблема четырёх красок | Википедия {{---}} Проблема четырёх красок]] |
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
[[Категория: Раскраски графов]] | [[Категория: Раскраски графов]] |
Версия 22:33, 6 июня 2014
Для планарного графа можно дать оценку сверху на хроматическое число.
Раскраска в 6 цветов
Лемма: |
В любом графе существует вершина степени не больше 5 |
Доказательство: |
Предположим это не так. Для любой вершины следствию из теоремы Эйлера . Пришли к противоречию. | графа верно . Если сложить это неравенство для всех , получим . Но по
Теорема: |
Пусть граф - планарный. Тогда |
Доказательство: |
Докажем по индукции.
|
Раскраска в 5 цветов
Теорема: |
Пусть граф - планарный. Тогда |
Доказательство: |
Начало доказательства такое же, как в предыдущей теореме, трудность возникает в индукционном переходе. Покажем что для случая с 5-ю цветами всё равно можно вернуть удалённую вершину так, чтобы раскраска осталась правильной. Обозначим за - возвращаемую вершину, - вершину, покрашенную в цвет.Если среди вершин, смежных , есть две вершины одного цвета, значит остаётся по меньшей мере один свободный цвет, в который мы и покрасим .Иначе, уложим полученный после удаления граф на плоскость, вернём вершину (пока бесцветную) и пронумеруем цвета в порядке обхода смежных вершин по часовой стрелке.Попробуем покрасить в цвет 1. Чтобы раскраска осталась правильной, перекрасим смежную ей вершину в цвет 3. Если среди смежных ей вершин есть вершины , покрасим их в цвет 1, и так далее. Рассмотрим две необычные ситуации, которые могут наступить во время обхода:
Если этот процесс был успешно завершён, то получили правильную раскраску. Если же в соответствии со 2-ым вариантом перекраска не удалась, это означает, что в есть цикл .Тогда попытаемся таким же образом перекрасить Если нет, то получили ещё один цикл в цвет 2, а смежную ей в цвет 4 (со последующими перекрасками). Если удастся - раскраска получена. . Но граф планарный, значит два полученных цикла пересекаются помимо вершины по крайней мере ещё в одной, что невозможно, ведь вершины первого цикла и второго - разных цветов. Значит такой случай наступить не мог. |
Успешное перекрашивание | Цикл 1-3, перекрасить не удаётся | ||||||
Заметим что не удаётся составить подобное доказательство для раскраски в 4 цвета, поскольку здесь наличие двух вершин одного цвета среди смежных
не исключает того, что все они раскрашены в разные цветаРаскраска в 4 цвета
Данная теорема была доказана Кеннетом Аппелем и Вольфгангом Хакеном. Их доказательство сводилось к рассмотрению порядка 2000 графов, 4-раскрашиваемость которых была проверена при помощи компьютера. Подробнее см. здесь.