Оператор замыкания для матроидов — различия между версиями
Martoon (обсуждение | вклад) м |
Martoon (обсуждение | вклад) м |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
− | |definition = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} [[Определение матроида|матроид]]. Тогда '''замыкание (closure)''' множества <tex>A \subseteq X</tex> {{---}} это множество <tex>\langle A \rangle \subseteq X</tex> такое, что <tex>\langle A \rangle = A \cup \mathcal {f} x\; |\; \exists | + | |definition = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} [[Определение матроида|матроид]]. Тогда '''замыкание (closure)''' множества <tex>A \subseteq X</tex> {{---}} это множество <tex>\langle A \rangle \subseteq X</tex> такое, что <tex>\langle A \rangle = A \cup \mathcal {f} x \in X \; |\; \exists H \subseteq A :\ H \in I ,\; H \cup x \notin I \mathcal {g}</tex> |
}} | }} | ||
Строка 6: | Строка 6: | ||
|statement = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} матроид, <tex>A \subseteq X</tex>. Тогда <tex>r(A) = r(\langle A \rangle),</tex> где <tex>r</tex> {{---}} [[Ранговая функция, полумодулярность|ранг]]. | |statement = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} матроид, <tex>A \subseteq X</tex>. Тогда <tex>r(A) = r(\langle A \rangle),</tex> где <tex>r</tex> {{---}} [[Ранговая функция, полумодулярность|ранг]]. | ||
|proof = | |proof = | ||
− | Пусть существуют множества <tex>B, C \in I:\ B \subseteq A, C \subseteq \langle A \rangle, |B| = r(A) < r(\langle A \rangle) = |C|.</tex> Тогда по аксиоме замен<ref>[[Определение матроида | Определение матроида]], 3-я аксиома</ref> <tex>\exists p \in C \setminus B :\ B \cup p \in I.</tex> Так как <tex>B</tex> {{---}} максимально, то <tex>p \in \langle A \rangle \setminus A.</tex> По определению замыкания существует множество <tex> | + | Пусть существуют множества <tex>B, C \in I:\ B \subseteq A, C \subseteq \langle A \rangle, |B| = r(A) < r(\langle A \rangle) = |C|.</tex> Тогда по аксиоме замен<ref>[[Определение матроида | Определение матроида]], 3-я аксиома</ref> <tex>\exists p \in C \setminus B :\ B \cup p \in I.</tex> Так как <tex>B</tex> {{---}} максимально, то <tex>p \in \langle A \rangle \setminus A.</tex> По определению замыкания существует множество <tex>H \subseteq A:\ H \in I,\ H\cup p \notin I.</tex> В силу аксиомы наследования<ref>[[Определение матроида | Определение матроида]], 2-я аксиома</ref> можно считать, что <tex>|H| = |B|.</tex> Тогда <tex>r(A) = |H| < |B \cup p|.</tex> По аксиоме замены существует <tex>q \in (B \cup p)\setminus H :\ H \cup q \in I.</tex> |
− | Если <tex>q \in B,</tex> то <tex>( | + | Если <tex>q \in B,</tex> то <tex>(H \cup q) \subseteq A</tex> (противоречит максимальности множества <tex>H</tex>). Если <tex>q = p,</tex> то <tex>(H \cup p) \in I</tex> (противоречит выбору множества <tex>H</tex>). |
}} | }} | ||
Строка 18: | Строка 18: | ||
# <tex>\langle \langle A \rangle \rangle = \langle A \rangle </tex> | # <tex>\langle \langle A \rangle \rangle = \langle A \rangle </tex> | ||
|proof = | |proof = | ||
− | # <tex>x \in \langle A \rangle.</tex> | + | # Положим <tex>x \in \langle A \rangle.</tex> В соответствии с определением оператора замыкания есть 2 случая: |
− | # | + | #* <tex> x \in A. </tex> Тогда <tex> x \in B </tex>, и следовательно <tex> x \in \langle B \rangle. </tex> |
+ | #* <tex>\exists H \subseteq A :\ H \in I,\ H \cup x \notin I.</tex> Для такого <tex> H </tex> также верно <tex>H \subseteq B,</tex> потому <tex>x \in \langle B \rangle.</tex> | ||
+ | # Опять два случая: | ||
+ | #* <tex> q \in A \cup p. </tex> Зная, что <tex> p \notin \langle A \rangle, </tex> приходим к <tex> q = p, </tex> чего нам более чем достаточно. | ||
+ | #* <tex> \exists H \subseteq A \cup p :\ H \in I,\ H \cup q \notin I. </tex> | ||
+ | #*: Заметим что <tex> p \in H </tex>, иначе бы <tex> H </tex> подходило для <tex> q \in \langle A \rangle, </tex> поэтому запишем данное нам иначе: | ||
+ | #*:: <tex> \exists H' \subseteq A:\ H' \cup p \in I,\ (H' \cup p) \cup q \notin I. </tex> | ||
+ | #*: <tex> H' \cup q \in I </tex>, в противном случае в силу <tex> H' \in I </tex> было бы <tex> q \in \langle A \rangle. </tex> | ||
+ | #*: Как видим, у нас есть всё необходимое чтобы сказать, что <tex> p \in \langle A \cup q \rangle. </tex> | ||
# Из определения понятно, что <tex> \langle A \rangle \subseteq \langle \langle A \rangle \rangle </tex>. Предположим <tex>\exists p \in \langle \langle A \rangle \rangle \setminus \langle A \rangle.</tex> Возьмем максимальное по мощности множество <tex>B \in I :\ B \subseteq A.</tex> Так как <tex>p \notin \langle A \rangle,</tex> то по определению замыкания <tex>B \cup p \in I.</tex> Тогда, последовательно применив вышеуказанную лемму, дважды [[Ранговая функция, полумодулярность | определение ранга]] и снова лемму, получим <tex>r(\langle A \rangle) = r(\langle \langle A \rangle \rangle) \geqslant |B \cup p| = r(A) + 1 = r(\langle A \rangle) + 1,</tex> что невозможно. | # Из определения понятно, что <tex> \langle A \rangle \subseteq \langle \langle A \rangle \rangle </tex>. Предположим <tex>\exists p \in \langle \langle A \rangle \rangle \setminus \langle A \rangle.</tex> Возьмем максимальное по мощности множество <tex>B \in I :\ B \subseteq A.</tex> Так как <tex>p \notin \langle A \rangle,</tex> то по определению замыкания <tex>B \cup p \in I.</tex> Тогда, последовательно применив вышеуказанную лемму, дважды [[Ранговая функция, полумодулярность | определение ранга]] и снова лемму, получим <tex>r(\langle A \rangle) = r(\langle \langle A \rangle \rangle) \geqslant |B \cup p| = r(A) + 1 = r(\langle A \rangle) + 1,</tex> что невозможно. | ||
}} | }} |
Версия 19:53, 7 июня 2014
Определение: |
Пусть матроид. Тогда замыкание (closure) множества — это множество такое, что | —
Лемма: |
Пусть ранг. — матроид, . Тогда где — |
Доказательство: |
Пусть существуют множества [1] Так как — максимально, то По определению замыкания существует множество В силу аксиомы наследования[2] можно считать, что Тогда По аксиоме замены существует Если Тогда по аксиоме замен то (противоречит максимальности множества ). Если то (противоречит выбору множества ). |
Теорема: |
Оператор замыкания для матроидов обладает следующими свойствами:
|
Доказательство: |
|
Примечания
- ↑ Определение матроида, 3-я аксиома
- ↑ Определение матроида, 2-я аксиома
Источники информации
Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2