Алгоритм Shift-And — различия между версиями
(→Корректность) |
(→Корректность) |
||
Строка 56: | Строка 56: | ||
==Корректность== | ==Корректность== | ||
− | Докажем, что метод <tex>Shift-Or</tex> правильно вычисляет элементы массива <tex>M</tex>. Заметим, что для любого <tex>i > 1</tex> элемент <tex>M[i][j] = 1</tex> тогда и только тогда, когда <tex>p[1..i - 1]</tex> совпадает с <tex>t[j - i + 1..j]</tex>, а символ <tex>p[i]</tex> совпадает с <tex>t[j]</tex>. Первое условие выполнено, когда элемент массива <tex>M[i - 1][j - 1] = 1</tex>, а второе — когда <tex>i</tex>-ый бит вектора <tex>U</tex> для символа <tex>t[j]</tex> равен <tex>1</tex>. После сдвига столбца <tex>j - 1</tex> алгоритм логически умножает элемент <tex>M[i | + | Докажем, что метод <tex>Shift-Or</tex> правильно вычисляет элементы массива <tex>M</tex>. Заметим, что для любого <tex>i > 1</tex> элемент <tex>M[i][j] = 1</tex> тогда и только тогда, когда <tex>p[1..i - 1]</tex> совпадает с <tex>t[j - i + 1..j]</tex>, а символ <tex>p[i]</tex> совпадает с <tex>t[j]</tex>. Первое условие выполнено, когда элемент массива <tex>M[i - 1][j - 1] = 1</tex>, а второе — когда <tex>i</tex>-ый бит вектора <tex>U</tex> для символа <tex>t[j]</tex> равен <tex>1</tex>. После сдвига столбца <tex>j - 1</tex> алгоритм логически умножает элемент <tex>M[i - 1][j - 1]</tex> столбца <tex>j - 1</tex> на элемент <tex>i</tex> вектора <tex>U(t[j])</tex>. Следовательно, все элементы <tex>M</tex> вычисляются правильно и алгоритм находит все вхождения образца в текст. |
==Эффективность== | ==Эффективность== |
Версия 20:06, 8 июня 2014
В 1990ые годы Рикардо Беза-Йетс (англ. Ricardo Baeza-Yates) и Гастон Гоннет (англ. Gaston Gonnet) изобрели простой битовый метод, эффективно решающий задачу точного поиска малых образцов (длиной в типичное английское слово). Они назвали его методом
. Также алгоритм известен как алгоритм и алгоритм Беза-Йетса-Гоннета. Существует вариация данного алгоритма под названием , которая будет рассмотрена ниже.Алгоритм
Пусть
— шаблон длины , — текст длины .Нам потребуется двоичный массив
размером , в котором индекс пробегает значения от до , а индекс — от до ., если первые символов точно совпадают с символами , кончаясь на позиции ; иначе .
Например, пусть
, . Тогда , остальные .Получаем, что элементы, равные
, в строчке показывают все места в , где заканчиватся копии , а столбец показывает все префиксы , которые заканчиваются в позиции строки . тогда, когда вхождение заканчивается в позиции строки . То есть вычисление последней строки решает задачу точного совпадения.Построение массива
.Создадим для каждого символа алфавита
двоичный вектор длины . равно в тех позициях , где стоит символ . Например, ,Определим
как вектор, полученный сдвигом вектора для столбца вниз на одну позицию и записью в первой позиции. Старое значение в позиции теряется. То есть состоит из , к которой приписаны первые битов столбца .Из определения, нулевой столбец
состоит из нулей. Элементы любого другого столбца получаются из столбца и вектора для символа . А именно, вектор для столбца получается операцией побитового логического умножения вектора и вектора . Например, …Псевдокод
string bitap_search(string text, string pattern)
n = pattern.length
m = text.length
if n == 0
return text
M = new array [n] of bit // для поиска коротких слов достаточно одной переменной типа integer
fill(M, 0)
U = new array [
][n] of bit, initially all 0
for i = 1..n // препроцессинг - вычисление вектора U
U[pattern[i]][i] = 1
for j = 1..m
M = Bit-Shift(M) & U[t[j]]
if M[n]
return text[j - n + 1..j]
return null
Корректность
Докажем, что метод
правильно вычисляет элементы массива . Заметим, что для любого элемент тогда и только тогда, когда совпадает с , а символ совпадает с . Первое условие выполнено, когда элемент массива , а второе — когда -ый бит вектора для символа равен . После сдвига столбца алгоритм логически умножает элемент столбца на элемент вектора . Следовательно, все элементы вычисляются правильно и алгоритм находит все вхождения образца в текст.Эффективность
Сложность алгоритма составляет
, на препроцессинг — построение массива требуется операций и памяти. Если же не превышает длину машинного слова, то сложность получается и соответсвенно.Алгоритм Shift-Or
...