Алгоритм Shift-And — различия между версиями
Shersh (обсуждение | вклад) (→Корректность) |
|||
Строка 77: | Строка 77: | ||
Очевидно, что алгоритм <tex>Shift-Or</tex> корректен, так как данная формула получается применением логического отрицания к аналогичной формуле для алгоритма <tex>Shift-And</tex>, корректность которого была доказана выше. | Очевидно, что алгоритм <tex>Shift-Or</tex> корректен, так как данная формула получается применением логического отрицания к аналогичной формуле для алгоритма <tex>Shift-And</tex>, корректность которого была доказана выше. | ||
+ | |||
+ | ==См. также== | ||
+ | * [[Z-функция]] | ||
+ | * [[Алгоритм Кнута-Морриса-Пратта]] | ||
+ | |||
+ | ==Источники информации== | ||
+ | *''Дэн Гасфилд'' — '''Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология''' — СПб.: Невский Диалект; БХВ-Петербург, 2003. — стр 100. | ||
+ | *[[wikipedia:Bitap algorithm | Wikipedia {{---}} Bitap algorithm]] | ||
+ | *[http://algolist.manual.ru/search/esearch/shift_or.php Алгоритм Shift-Or] | ||
+ | *[http://www-igm.univ-mlv.fr/~lecroq/string/node6.html Shift-Or algorithm] | ||
+ | |||
+ | [[Категория: Алгоритмы и структуры данных]] | ||
+ | [[Категория: Поиск подстроки в строке]] |
Версия 21:30, 8 июня 2014
В 1990ые годы Рикардо Беза-Йетс (англ. Ricardo Baeza-Yates) и Гастон Гоннет (англ. Gaston Gonnet) изобрели простой битовый метод, эффективно решающий задачу точного поиска малых образцов (длиной в типичное английское слово). Они назвали его методом
. Также алгоритм известен как алгоритм и алгоритм Беза-Йетса-Гоннета. Существует вариация данного алгоритма под названием , которая будет рассмотрена ниже.Содержание
Алгоритм
Пусть
— шаблон длины , — текст длины .Нам потребуется двоичный массив
размером , в котором индекс пробегает значения от до , а индекс — от до ., если первые символов точно совпадают с символами , кончаясь на позиции ; иначе .
Например, пусть
, . Тогда , остальные .Получаем, что элементы, равные
, в строчке показывают все места в , где заканчиватся копии , а столбец показывает все префиксы , которые заканчиваются в позиции строки . тогда, когда вхождение заканчивается в позиции строки . То есть вычисление последней строки решает задачу точного совпадения.Построение массива
.Создадим для каждого символа алфавита
двоичный вектор длины . равно в тех позициях , где стоит символ . Например, ,Определим
как вектор, полученный сдвигом вектора для столбца вниз на одну позицию и записью в первой позиции. Старое значение в позиции теряется. То есть состоит из , к которой приписаны первые битов столбца .Из определения, нулевой столбец
состоит из нулей. Элементы любого другого столбца получаются из столбца и вектора для символа . А именно, вектор для столбца получается операцией побитового логического умножения вектора и вектора .Псевдокод
string bitap_search(string text, string pattern)
n = pattern.length
m = text.length
if n == 0
return text
M = new array [n] of bit // для поиска коротких слов достаточно одной переменной типа integer
fill(M, 0)
U = new array [
][n] of bit, initially all 0
for i = 1..n // препроцессинг - вычисление вектора U
U[pattern[i]][i] = 1
for j = 1..m
M = Bit-Shift(M) & U[text[j]]
if M[n]
return text[j - n + 1..j]
return null
Корректность
Докажем, что метод
правильно вычисляет элементы массива . Заметим, что для любого элемент тогда и только тогда, когда совпадает с , а символ совпадает с . Первое условие выполнено, когда элемент массива , а второе — когда -ый бит вектора для символа равен . Таким образом, чтобы вычислить элемент , нужно взять результат побитовой операции элементов и . Это эквивалентно применению побитовой операции к вектору и сдвинутому на столбцу под номером массива . Для нам достаточно проверить, что , поэтому мы и записываем в единицу, что и делает операция . Получаем, что наш алгоритм корректно вычисляет все значения массива .Эффективность
Сложность алгоритма составляет
, на препроцессинг — построение массива требуется операций и памяти. Если же не превышает длину машинного слова, то сложность получается и соответсвенно.Алгоритм Shift-Or
Аналогичен алгоритму
, но вместо массива используется массив , определяемый следующим образом:
Следующий столбец
получается операцией побитового логического сложения вектора и вектора . Здесь , а - сдвиг вектора на одну позицию вниз с записью в первой позиции.
Очевидно, что алгоритм
корректен, так как данная формула получается применением логического отрицания к аналогичной формуле для алгоритма , корректность которого была доказана выше.См. также
Источники информации
- Дэн Гасфилд — Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология — СПб.: Невский Диалект; БХВ-Петербург, 2003. — стр 100.
- Wikipedia — Bitap algorithm
- Алгоритм Shift-Or
- Shift-Or algorithm