Алгоритм Shift-And — различия между версиями
Shersh (обсуждение | вклад) |
|||
Строка 1: | Строка 1: | ||
− | В 1990ые годы Рикардо Беза-Йетс (англ. ''Ricardo Baeza-Yates'') и Гастон Гоннет (англ. ''Gaston Gonnet'') изобрели простой битовый метод, эффективно решающий задачу точного поиска малых образцов (длиной в типичное английское слово). Они назвали его методом <tex>Shift-And</tex>. Также алгоритм известен как <tex>bitap</tex> алгоритм и алгоритм Беза-Йетса-Гоннета. Существует вариация данного алгоритма под названием <tex>Shift\texttt{-}Or</tex>, которая будет рассмотрена ниже. | + | В 1990ые годы Рикардо Беза-Йетс (англ. ''Ricardo Baeza-Yates'') и Гастон Гоннет (англ. ''Gaston Gonnet'') изобрели простой битовый метод, эффективно решающий задачу точного поиска малых образцов (длиной в типичное английское слово). Они назвали его методом <tex>Shift\texttt{-}And</tex>. Также алгоритм известен как <tex>bitap</tex> алгоритм и алгоритм Беза-Йетса-Гоннета. Существует вариация данного алгоритма под названием <tex>Shift\texttt{-}Or</tex>, которая будет рассмотрена ниже. |
==Алгоритм== | ==Алгоритм== | ||
Строка 21: | Строка 21: | ||
Получаем, что элементы, равные <tex>1</tex>, в строчке <tex>i</tex> показывают все места в <tex>t</tex>, где заканчиватся копии <tex>p[1..i]</tex>, а столбец <tex>j</tex> показывает все префиксы <tex>p</tex>, которые заканчиваются в позиции <tex>j</tex> строки <tex>t</tex>. | Получаем, что элементы, равные <tex>1</tex>, в строчке <tex>i</tex> показывают все места в <tex>t</tex>, где заканчиватся копии <tex>p[1..i]</tex>, а столбец <tex>j</tex> показывает все префиксы <tex>p</tex>, которые заканчиваются в позиции <tex>j</tex> строки <tex>t</tex>. | ||
+ | |||
<tex>M[n][j] = 1</tex> тогда, когда вхождение <tex>p</tex> заканчивается в позиции <tex>j</tex> строки <tex>t</tex>. | <tex>M[n][j] = 1</tex> тогда, когда вхождение <tex>p</tex> заканчивается в позиции <tex>j</tex> строки <tex>t</tex>. | ||
То есть вычисление последней строки <tex>M</tex> решает задачу точного совпадения. | То есть вычисление последней строки <tex>M</tex> решает задачу точного совпадения. | ||
− | Построение массива | + | === Построение массива M === |
− | Создадим для каждого символа алфавита <tex>x</tex> двоичный вектор <tex>U | + | Создадим для каждого символа алфавита <tex>x</tex> двоичный вектор <tex>U[x]</tex> длины <tex>n</tex>. <tex>U[x]</tex> равно <tex>1</tex> в тех позициях <tex>p</tex>, где стоит символ <tex>x</tex>. |
− | Например, <tex>p = abacdeab</tex>, <tex>U | + | Например, <tex>p = abacdeab</tex>, <tex>U[a] = 10100010</tex> |
+ | |||
+ | {{Определение | ||
+ | |definition = | ||
+ | Назовём вектором <tex>Bit\texttt{-}Shift(M[j])</tex> такой вектор, который получен сдвигом столбца <tex>M[j]</tex> вниз на одну позицию и записью <tex>1</tex> в первой позиции. Старое значение в позиции <tex>n</tex> теряется. | ||
+ | }} | ||
+ | |||
+ | То есть <tex>Bit\texttt{-}Shift(M[j])</tex> состоит из <tex>1</tex>, к которой приписаны первые <tex>n - 1</tex> битов столбца <tex>M[j]</tex>. Например, | ||
− | |||
− | |||
<tex>(0, 0, 0, 1, 0, 1, 1, 0, 1) \rightarrow (1, 0, 0, 0, 1, 0, 1, 1, 0)</tex> | <tex>(0, 0, 0, 1, 0, 1, 1, 0, 1) \rightarrow (1, 0, 0, 0, 1, 0, 1, 1, 0)</tex> | ||
− | Из определения, нулевой столбец <tex>M</tex> состоит из нулей. Элементы любого другого столбца <tex>M[j], j > 0</tex> получаются из столбца <tex>M[j - 1]</tex> и вектора <tex>U</tex> для символа <tex>t[j]</tex>. А именно, вектор для столбца <tex>j</tex> получается операцией побитового логического умножения <tex>and</tex> вектора <tex>Bit-Shift(M[j - 1])</tex> и вектора <tex>U | + | Из определения, нулевой столбец <tex>M</tex> состоит из нулей. Элементы любого другого столбца <tex>M[j],\ j > 0</tex> получаются из столбца <tex>M[j - 1]</tex> и вектора <tex>U</tex> для символа <tex>t[j]</tex>. А именно, вектор для столбца <tex>j</tex> получается операцией побитового логического умножения <tex>and</tex> вектора <tex>Bit\texttt{-}Shift(M[j - 1])</tex> и вектора <tex>U[t[j]]</tex>. |
− | <tex>M[j] = Bit-Shift(M[j - 1]) \ and \ U | + | <tex>M[j] = Bit\texttt{-}Shift(M[j - 1]) \ and \ U[t[j]]</tex> |
− | ==Псевдокод== | + | ===Псевдокод=== |
'''string''' bitap_search('''string''' text, '''string''' pattern) | '''string''' bitap_search('''string''' text, '''string''' pattern) |
Версия 01:35, 9 июня 2014
В 1990ые годы Рикардо Беза-Йетс (англ. Ricardo Baeza-Yates) и Гастон Гоннет (англ. Gaston Gonnet) изобрели простой битовый метод, эффективно решающий задачу точного поиска малых образцов (длиной в типичное английское слово). Они назвали его методом
. Также алгоритм известен как алгоритм и алгоритм Беза-Йетса-Гоннета. Существует вариация данного алгоритма под названием , которая будет рассмотрена ниже.Содержание
Алгоритм
Пусть
— шаблон длины , — текст длины .Нам потребуется двоичный массив
размером , в котором индекс пробегает значения от до , а индекс — от до ., если первые символов точно совпадают с символами , кончаясь на позиции ; иначе .
Например, пусть
, . Тогда , остальные .Получаем, что элементы, равные
, в строчке показывают все места в , где заканчиватся копии , а столбец показывает все префиксы , которые заканчиваются в позиции строки .тогда, когда вхождение заканчивается в позиции строки . То есть вычисление последней строки решает задачу точного совпадения.
Построение массива M
Создадим для каждого символа алфавита
двоичный вектор длины . равно в тех позициях , где стоит символ . Например, ,
Определение: |
Назовём вектором | такой вектор, который получен сдвигом столбца вниз на одну позицию и записью в первой позиции. Старое значение в позиции теряется.
То есть состоит из , к которой приписаны первые битов столбца . Например,
Из определения, нулевой столбец
состоит из нулей. Элементы любого другого столбца получаются из столбца и вектора для символа . А именно, вектор для столбца получается операцией побитового логического умножения вектора и вектора .Псевдокод
string bitap_search(string text, string pattern)
n = pattern.length
m = text.length
if n == 0
return text
M = new array [n] of bit // для поиска коротких слов достаточно одной переменной типа integer
fill(M, 0)
U = new array [
][n] of bit, initially all 0
for i = 1..n // препроцессинг - вычисление вектора U
U[pattern[i]][i] = 1
for j = 1..m
M = Bit-Shift(M) & U[text[j]]
if M[n]
return text[j - n + 1..j]
return null
Корректность
Докажем, что метод
правильно вычисляет элементы массива . Заметим, что для любого элемент тогда и только тогда, когда совпадает с , а символ совпадает с . Первое условие выполнено, когда элемент массива , а второе — когда -ый бит вектора для символа равен . Таким образом, чтобы вычислить элемент , нужно взять результат побитовой операции элементов и . Это эквивалентно применению побитовой операции к вектору и сдвинутому на столбцу под номером массива . Для нам достаточно проверить, что , поэтому мы и записываем в единицу, что и делает операция . Получаем, что наш алгоритм корректно вычисляет все значения массива .Эффективность
Сложность алгоритма составляет
, на препроцессинг — построение массива требуется операций и памяти. Если же не превышает длину машинного слова, то сложность получается и соответсвенно.Алгоритм Shift-Or
Аналогичен алгоритму
, но вместо массива используется массив , определяемый следующим образом:
Следующий столбец
получается операцией побитового логического сложения вектора и вектора . Здесь , а - сдвиг вектора на одну позицию вниз с записью в первой позиции.
Очевидно, что алгоритм
корректен, так как данная формула получается применением логического отрицания к аналогичной формуле для алгоритма , корректность которого была доказана выше.См. также
Источники информации
- Дэн Гасфилд — Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология — СПб.: Невский Диалект; БХВ-Петербург, 2003. — стр 100.
- Wikipedia — Bitap algorithm
- Алгоритм Shift-Or
- Shift-Or algorithm