Алгоритм Shift-And — различия между версиями
Shersh (обсуждение | вклад) (→Эффективность) |
Shersh (обсуждение | вклад) (→Алгоритм Shift-Or) |
||
Строка 67: | Строка 67: | ||
==Алгоритм Shift-Or== | ==Алгоритм Shift-Or== | ||
− | Аналогичен алгоритму <tex>Shift-And</tex>, но вместо массива <tex>M</tex> используется массив <tex>R</tex>, определяемый следующим образом: | + | Аналогичен алгоритму <tex>Shift\texttt{-}And</tex>, но вместо массива <tex>M</tex> используется массив <tex>R</tex>, определяемый следующим образом: |
<tex> R[i][j] = | <tex> R[i][j] = | ||
Строка 78: | Строка 78: | ||
</tex> | </tex> | ||
− | Следующий столбец <tex>R[j]</tex> получается операцией побитового логического сложения <tex>or</tex> вектора <tex>Bit-Shift'(R[j - 1])</tex> и вектора <tex>W | + | Следующий столбец <tex>R[j]</tex> получается операцией побитового логического сложения <tex>or</tex> вектора <tex>Bit\texttt{-}Shift'(R[j - 1])</tex> и вектора <tex>W[t[j]]</tex>. Здесь <tex>W[t[j]] = not \ U[t[j]]</tex>, а <tex>Bit\texttt{-}Shift'(R[j - 1])</tex> {{---}} сдвиг вектора <tex>R[j - 1]</tex> на одну позицию вниз с записью <tex>0</tex> в первой позиции. |
− | <tex>R[j] = Bit-Shift(R[j - 1]) \ or \ W | + | <tex>R[j] = Bit\texttt{-}Shift'(R[j - 1]) \ or \ W[t[j]]</tex> |
− | Очевидно, что алгоритм <tex>Shift-Or</tex> корректен, так как данная формула получается применением логического отрицания к аналогичной формуле для алгоритма <tex>Shift-And</tex>, корректность которого была доказана выше. | + | Очевидно, что алгоритм <tex>Shift\texttt{-}Or</tex> корректен, так как данная формула получается применением логического отрицания к аналогичной формуле для алгоритма <tex>Shift\texttt{-}And</tex>, корректность которого была доказана выше. |
==См. также== | ==См. также== |
Версия 01:49, 9 июня 2014
В 1990ые годы Рикардо Беза-Йетс (англ. Ricardo Baeza-Yates) и Гастон Гоннет (англ. Gaston Gonnet) изобрели простой битовый метод, эффективно решающий задачу точного поиска малых образцов (длиной в типичное английское слово). Они назвали его методом
. Также алгоритм известен как алгоритм и алгоритм Беза-Йетса-Гоннета. Существует вариация данного алгоритма под названием , которая будет рассмотрена ниже.Содержание
Алгоритм
Пусть
— шаблон длины , — текст длины .Нам потребуется двоичный массив
размером , в котором индекс пробегает значения от до , а индекс — от до ., если первые символов точно совпадают с символами , кончаясь на позиции ; иначе .
Например, пусть
, . Тогда , остальные .Получаем, что элементы, равные
, в строчке показывают все места в , где заканчиватся копии , а столбец показывает все префиксы , которые заканчиваются в позиции строки .тогда, когда вхождение заканчивается в позиции строки . То есть вычисление последней строки решает задачу точного совпадения.
Построение массива M
Создадим для каждого символа алфавита
двоичный вектор длины . равно в тех позициях , где стоит символ . Например, ,
Определение: |
Назовём вектором | такой вектор, который получен сдвигом столбца вниз на одну позицию и записью в первой позиции. Старое значение в позиции теряется.
То есть состоит из , к которой приписаны первые битов столбца . Например,
Из определения, нулевой столбец
состоит из нулей. Элементы любого другого столбца получаются из столбца и вектора для символа . А именно, вектор для столбца получается операцией побитового логического умножения вектора и вектора .Псевдокод
string shiftAndSearch(string text, string pattern): n = pattern.length m = text.length if n == 0 return text M = array[n] of bit // для поиска коротких слов достаточно одной переменной типа integer fill(M, 0) U = new array [][n] of bit // изначально все элементы равны for i = 1..n // препроцессинг — вычисление вектора U[pattern[i]][i] = 1 for j = 1..m M = Bit-Shift(M) & U[text[j]] if M[n] return text[j - n + 1..j] return null
Корректность
Докажем, что метод
правильно вычисляет элементы массива . Заметим, что для любого элемент тогда и только тогда, когда совпадает с , а символ совпадает с . Первое условие выполнено, когда элемент массива , а второе — когда -ый бит вектора для символа равен . Таким образом, чтобы вычислить элемент , нужно взять результат побитовой операции элементов и . Это эквивалентно применению побитовой операции к вектору и сдвинутому на столбцу под номером массива . Для нам достаточно проверить, что , поэтому мы и записываем в единицу, что и делает операция . Получаем, что наш алгоритм корректно вычисляет все значения массива .Эффективность
Сложность алгоритма составляет
, на препроцессинг — построение массива — требуется операций и памяти. Если же не превышает длину машинного слова, то сложность получается и соответсвенно.Алгоритм Shift-Or
Аналогичен алгоритму
, но вместо массива используется массив , определяемый следующим образом:
Следующий столбец
получается операцией побитового логического сложения вектора и вектора . Здесь , а — сдвиг вектора на одну позицию вниз с записью в первой позиции.
Очевидно, что алгоритм
корректен, так как данная формула получается применением логического отрицания к аналогичной формуле для алгоритма , корректность которого была доказана выше.См. также
Источники информации
- Дэн Гасфилд — Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология — СПб.: Невский Диалект; БХВ-Петербург, 2003. — стр 100.
- Wikipedia — Bitap algorithm
- Алгоритм Shift-Or
- Shift-Or algorithm