Оператор замыкания для матроидов — различия между версиями
Martoon (обсуждение | вклад) м (→Источники информации) |
Martoon (обсуждение | вклад) м |
||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
− | |definition = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} [[Определение матроида|матроид]]. Тогда '''замыкание (closure | + | |definition = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} [[Определение матроида|матроид]]. Тогда '''замыкание''' (''closure'') множества <tex>A \subseteq X</tex> {{---}} это множество <tex>\langle A \rangle \subseteq X</tex> такое, что <tex>\langle A \rangle = A \cup \mathcal {f} x \in X \; |\; \exists H \subseteq A :\ H \in I ,\; H \cup x \notin I \mathcal {g}</tex> |
}} | }} | ||
Строка 22: | Строка 22: | ||
#* <tex>\exists H \subseteq A :\ H \in I,\ H \cup x \notin I.</tex> Для такого <tex> H </tex> также верно <tex>H \subseteq B,</tex> потому <tex>x \in \langle B \rangle.</tex> | #* <tex>\exists H \subseteq A :\ H \in I,\ H \cup x \notin I.</tex> Для такого <tex> H </tex> также верно <tex>H \subseteq B,</tex> потому <tex>x \in \langle B \rangle.</tex> | ||
# Опять два случая: | # Опять два случая: | ||
− | #* <tex> q \in A \cup p. </tex> Зная, что <tex> | + | #* <tex> q \in A \cup p. </tex> Зная, что <tex> q \notin \langle A \rangle, </tex> приходим к <tex> q = p, </tex> чего нам более чем достаточно. |
#* <tex> \exists H \subseteq A \cup p :\ H \in I,\ H \cup q \notin I. </tex> | #* <tex> \exists H \subseteq A \cup p :\ H \in I,\ H \cup q \notin I. </tex> | ||
#*: Заметим, что <tex> p \in H </tex>, иначе бы <tex> H </tex> подходило для <tex> q \in \langle A \rangle, </tex> поэтому запишем имеющееся у нас иначе, положив <tex> H' = H \setminus p: </tex> | #*: Заметим, что <tex> p \in H </tex>, иначе бы <tex> H </tex> подходило для <tex> q \in \langle A \rangle, </tex> поэтому запишем имеющееся у нас иначе, положив <tex> H' = H \setminus p: </tex> |
Версия 21:47, 9 июня 2014
Определение: |
Пусть матроид. Тогда замыкание (closure) множества — это множество такое, что | —
Лемма: |
Пусть ранг. — матроид, . Тогда где — |
Доказательство: |
Пусть существуют множества [1] Так как — максимальное независимое множество из , то то есть Согласно определению замыкания возьмём максимальное по мощности множество Поскольку то по аксиоме замены существует Если Тогда по аксиоме замен то но в силу (противоречие с максимальностью множества ). Если то (противоречит выбору множества ). |
Теорема: |
Оператор замыкания для матроидов обладает следующими свойствами:
|
Доказательство: |
|
Примечания
- ↑ Определение матроида, 3-я аксиома
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. — Дискретная математика: Графы, матроиды, алгоритмы. ISBN 978-5-8114-1068-2
- Wikipedia — Matroid
- Википедия — Матроид