Основные определения, связанные со строками — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Отношения между строками)
(Отношения между строками)
Строка 43: Строка 43:
 
{{Определение
 
{{Определение
 
|id=prefix
 
|id=prefix
|definition='''Префикс''' (англ. ''Prefix'') строки <tex>\beta</tex> {{---}} строка <tex>\alpha</tex>: <tex>\beta = \alpha \gamma</tex>.  
+
|definition='''Префикс''' (англ. ''prefix'') строки <tex>\beta</tex> {{---}} строка <tex>\alpha</tex>: <tex>\beta = \alpha \gamma</tex>.  
 
}}
 
}}
  
Строка 50: Строка 50:
 
{{Определение
 
{{Определение
 
|id=suffix
 
|id=suffix
|definition='''Суффикс''' (англ. ''Suffix'') строки <tex>\beta</tex> {{---}} строка <tex>\alpha</tex>: <tex>\beta = \gamma \alpha </tex>.  
+
|definition='''Суффикс''' (англ. ''suffix'') строки <tex>\beta</tex> {{---}} строка <tex>\alpha</tex>: <tex>\beta = \gamma \alpha </tex>.  
 
}}
 
}}
  
Строка 57: Строка 57:
 
{{Определение
 
{{Определение
 
|id=border
 
|id=border
|definition='''Бордер''' (англ. ''Circumfix'') строки <tex>\beta</tex> {{---}} строка <tex>\alpha</tex>: <tex>\beta = \gamma \alpha = \alpha \eta</tex>.
+
|definition='''Бордер''' (англ. ''circumfix'') строки <tex>\beta</tex> {{---}} строка <tex>\alpha</tex>: <tex>\beta = \gamma \alpha = \alpha \eta</tex>.
 
}}
 
}}
  
Строка 64: Строка 64:
 
{{Определение
 
{{Определение
 
|id=period
 
|id=period
|definition='''Период''' (англ. ''Period'') строки <tex>\alpha</tex> {{---}} число <tex>p</tex>: <tex>\forall i = 1 \ldots |\alpha| - p,  
+
|definition='''Период''' (англ. ''period'') строки <tex>\alpha</tex> {{---}} число <tex>p</tex>: <tex>\forall i = 1 \ldots |\alpha| - p,  
 
\alpha [i] = \alpha[i + p]</tex>.  
 
\alpha [i] = \alpha[i + p]</tex>.  
 
}}
 
}}
Строка 85: Строка 85:
 
{{Определение
 
{{Определение
 
|id=substring
 
|id=substring
|definition='''Подстрока''' (англ. ''Substring'') {{---}} некоторая непустая связная часть строки.
+
|definition='''Подстрока''' (англ. ''substring'') {{---}} некоторая непустая связная часть строки.
 
}}
 
}}
  

Версия 00:07, 10 июня 2014

Базовые определения

Определение:
Символ (англ. Symbol) — объект, имеющий собственное содержание и уникальную читаемую форму.


Определение:
Алфавит (англ. Alphabet) [math]\Sigma[/math] — непустое множество символов.


Примеры:

  • [math]\Sigma = \left\{0, 1\right\} [/math] — бинарный алфавит.
  • [math]\Sigma = \left\{\cdot, -\right\} [/math] — алфавит, лежащий в основе азбуки Морзе.
  • [math]\Sigma = \left\{a, b, c, d, ... , z\right\} [/math] — английский алфавит.
  • [math]\Sigma = \left\{0, 1, 2, ..., 9\right\} [/math] — алфавит цифр.
  • Нотные знаки


Определение:
Нейтральный элемент — пустая строка [math]\varepsilon[/math]: [math]\varepsilon \in \Sigma^{0}[/math]. Для любой строки [math]\alpha \in \Sigma^k[/math] верно: [math]\alpha\varepsilon=\varepsilon\alpha=\alpha[/math].


Определение:
Замыкание Клини (англ. Kleene closure) — унарная операция над множеством строк либо символов. Замыкание Клини множества [math]\Sigma[/math] есть [math]\Sigma^* : \Sigma^* = \bigcup\limits_{n = 0}^\infty \Sigma^n[/math].


Если [math]\Sigma = \left\{0, 1\right\}[/math], то [math]\Sigma^* = \left\{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, ... \right\} [/math].


Определение:
Цепочка (англ. Chain) — элемент конечной длины из [math]\Sigma^*[/math].


Определение:
Конкатенация (англ. Concatenation) — бинарная, ассоциативная, некоммутативная операция, определённая на словах данного алфавита. Конкатецния строк [math]\alpha \in \Sigma^k[/math] и [math]\beta \in \Sigma^m[/math] является строка [math]\alpha\beta \in \Sigma^{k + m}[/math].


Определение:
Моноид (англ. Monoid) — множество, на котором задана бинарная ассоциативная операция, обычно именуемая умножением, и в котором существует нейтральный элемент. [math]\Sigma^*[/math] с операцией конкатенации и нейтральным элементом [math]\varepsilon[/math] образуют моноид


Отношения между строками

Определение:
Префикс (англ. prefix) строки [math]\beta[/math] — строка [math]\alpha[/math]: [math]\beta = \alpha \gamma[/math].


Пусть [math]\beta = \underline{abr}acadabra[/math], тогда [math]\alpha = abr[/math] — префикс [math]\beta[/math].


Определение:
Суффикс (англ. suffix) строки [math]\beta[/math] — строка [math]\alpha[/math]: [math]\beta = \gamma \alpha [/math].


Пусть [math]\beta = abracada\underline{bra}[/math], тогда [math]\alpha = bra[/math] — суффикс [math]\beta[/math].


Определение:
Бордер (англ. circumfix) строки [math]\beta[/math] — строка [math]\alpha[/math]: [math]\beta = \gamma \alpha = \alpha \eta[/math].


Пусть [math]\beta = \underline{abra}cad\underline{abra}[/math], тогда [math]\alpha = abra[/math] — бордер <tex\beta</tex>.


Определение:
Период (англ. period) строки [math]\alpha[/math] — число [math]p[/math]: [math]\forall i = 1 \ldots |\alpha| - p, \alpha [i] = \alpha[i + p][/math].


Пусть [math]\alpha = acaacaa[/math], тогда [math]p = 3[/math] — период строки [math]\alpha = acaacaa[/math].

Утверждение:
Пусть известна строка [math]\tau[/math] — период [math]\alpha[/math] и [math]|\alpha|[/math], тогда можно восстановить всю строку [math]\alpha[/math].
[math]\triangleright[/math]
Из определения периода строки следует, что [math]\alpha[1...|\tau|] = \alpha[|\tau| + 1...2*|\tau|] = ... = \alpha[|\tau|*(k - 1) + 1...|\tau|*k] [/math], где [math]k = \lfloor\frac{|\alpha|}{|\tau|} \rfloor[/math]. Таким образом [math]\alpha = \sum_{i=1}^{\lfloor\frac{|\alpha|}{|\tau|} \rfloor} \tau + \tau[1...|\alpha| mod |\tau|][/math].
[math]\triangleleft[/math]


Определение:
Строка [math]\alpha \neq \varepsilon[/math] c периодом [math]p \neq |\alpha|[/math], называется сильнопериодической, если [math]|\alpha| \bmod p = 0[/math].


Строка [math]\alpha = acaacaaca[/math] является сильнопериодической с периодом [math]p = 3[/math].


Определение:
Подстрока (англ. substring) — некоторая непустая связная часть строки.


Пусть [math]\beta = abr\underline{aca}dabra[/math], тогда [math]\alpha = aca[/math] — подстрока строки [math]\beta[/math].


Определение:
Строка [math]\alpha[/math] лексикографически меньше строки [math]\beta[/math] ([math]\alpha \lt \beta[/math]), если

1. [math]\alpha[/math] — префикс [math]\beta[/math]

или

2. [math] \mathcal {9} k\leqslant \min(|\alpha|, |\beta|): \alpha[k] \lt \beta[k] [/math] и при этом [math] \mathcal {8} j \lt k ~\alpha_j = \beta_j [/math]


Строка [math]\alpha = aca \lt \beta = acaaba[/math], так как является префиксом [math]\beta[/math].

Строка [math]\alpha = acaa \lt \beta = acab[/math], так как [math]a \lt b[/math].

Смотри также

Период и бордер, их связь

Слово Фибоначчи

Слово Туэ-Морса

Литература

  • Гасфилд Д. Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология. — 2-е изд.
  • Kelley, Dean (1995). Automata and Formal Languages: An Introduction. London: Prentice-Hall International. ISBN 0-13-497777-7.
  • Gusfield, Dan (1999) [1997]. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. USA: Cambridge University Press. ISBN 0-521-58519-8.