Фибоначчиева куча — различия между версиями
AlexeyL (обсуждение | вклад) (→Источники) |
AlexeyL (обсуждение | вклад) |
||
Строка 43: | Строка 43: | ||
|proof= | |proof= | ||
Докажем это утверждение по индукции. | Докажем это утверждение по индукции. | ||
− | Пусть <tex>s_n</tex> {{---}} минимальный размер фибоначчиева дерева порядка n. | + | Пусть <tex>s_n</tex> {{---}} минимальный размер фибоначчиева дерева порядка <tex>n</tex>. |
При <tex>n = 0</tex> | При <tex>n = 0</tex> | ||
Строка 70: | Строка 70: | ||
Фибоначчиевы кучи поддерживают тот же набор операций, что и [[Биномиальная куча|биномиальные кучи]], но имеют то преимущество, что операции, в которых не требуется удаление, имеют [[Амортизационный анализ|амортизированное]] время работы, равное <tex>O(1)</tex>. | Фибоначчиевы кучи поддерживают тот же набор операций, что и [[Биномиальная куча|биномиальные кучи]], но имеют то преимущество, что операции, в которых не требуется удаление, имеют [[Амортизационный анализ|амортизированное]] время работы, равное <tex>O(1)</tex>. | ||
− | С теоретической точки зрения фибоначчиевы кучи особенно полезны в случае, когда количество операций <tex>extractMin</tex> и <tex>delete</tex> относительно мало по сравнению с количеством других операций. Однако с практической точки зрения программная сложность и высокие значения постоянных множителей в формулах времени работы существенно снижают эффективность применения фибоначчиевых куч, делая их в большинстве случаев менее привлекательными, чем обычные [[Двоичная куча|бинарные кучи]]. | + | С теоретической точки зрения фибоначчиевы кучи особенно полезны в случае, когда количество операций <tex>\mathrm {extractMin}</tex> и <tex>\mathrm {delete}</tex> относительно мало по сравнению с количеством других операций. Однако с практической точки зрения программная сложность и высокие значения постоянных множителей в формулах времени работы существенно снижают эффективность применения фибоначчиевых куч, делая их в большинстве случаев менее привлекательными, чем обычные [[Двоичная куча|бинарные кучи]]. |
{{Лемма | {{Лемма | ||
Строка 102: | Строка 102: | ||
{{Лемма | {{Лемма | ||
|id=Лемма4 | |id=Лемма4 | ||
− | |statement=Максимальная степень <tex>D(n)</tex> произвольной вершины в фибоначчиевой куче с <tex>n</tex> вершинами равна <tex>O(\log | + | |statement=Максимальная степень <tex>D(n)</tex> произвольной вершины в фибоначчиевой куче с <tex>n</tex> вершинами равна <tex>O(\log n)</tex> |
|proof= | |proof= | ||
Пусть <tex>x</tex> {{---}} произвольная вершина в фибоначчиевой куче с <tex>n</tex> вершинами, и пусть <tex>k</tex> {{---}} степень вершины <tex>x</tex>. Тогда по [[#Лемма2|доказанному выше]] в дереве, корень которого <tex>x</tex>, содержится не менее <tex>F_k</tex> вершин, что в свою очередь по [[#Лемма3|лемме]] равно <tex>\Theta(\varphi^k)</tex>. | Пусть <tex>x</tex> {{---}} произвольная вершина в фибоначчиевой куче с <tex>n</tex> вершинами, и пусть <tex>k</tex> {{---}} степень вершины <tex>x</tex>. Тогда по [[#Лемма2|доказанному выше]] в дереве, корень которого <tex>x</tex>, содержится не менее <tex>F_k</tex> вершин, что в свою очередь по [[#Лемма3|лемме]] равно <tex>\Theta(\varphi^k)</tex>. | ||
Строка 113: | Строка 113: | ||
<tex>\log_{\varphi}n \geqslant k</tex> | <tex>\log_{\varphi}n \geqslant k</tex> | ||
− | Таким образом, максимальная степень <tex>D(n)</tex> произвольной вершины равна <tex>O(\log | + | Таким образом, максимальная степень <tex>D(n)</tex> произвольной вершины равна <tex>O(\log n)</tex>. |
}} | }} | ||
Строка 154: | Строка 154: | ||
|-align="center" | |-align="center" | ||
|<tex>extractMin</tex> | |<tex>extractMin</tex> | ||
− | |<tex>O(\log | + | |<tex>O(\log n )</tex> |
|-align="center" | |-align="center" | ||
|<tex>decreaseKey</tex> | |<tex>decreaseKey</tex> | ||
Строка 160: | Строка 160: | ||
|-align="center" | |-align="center" | ||
|<tex>delete</tex> | |<tex>delete</tex> | ||
− | |<tex>O(\log | + | |<tex>O(\log n )</tex> |
|} | |} | ||
− | Стоит заметить, что структура фибоначчиевых куч, также как [[Биномиальная куча|биномиальных]] и [[Двоичная куча|бинарных]], не могут обеспечить эффективную реализацию поиска элемента с заданным ключом, поэтому операции <tex>decreaseKey</tex> и <tex>delete</tex> получают в качестве аргумента указатель на узел, а не значение его ключа. | + | Стоит заметить, что структура фибоначчиевых куч, также как [[Биномиальная куча|биномиальных]] и [[Двоичная куча|бинарных]], не могут обеспечить эффективную реализацию поиска элемента с заданным ключом, поэтому операции <tex>\mathrm {decreaseKey}</tex> и <tex>\mathrm {delete}</tex> получают в качестве аргумента указатель на узел, а не значение его ключа. |
=== makeHeap === | === makeHeap === | ||
Строка 181: | Строка 181: | ||
=== extractMin === | === extractMin === | ||
− | Первая рассматриваемая операция, в ходе которой меняется структура кучи. Здесь используется вспомогательная процедура <tex> consolidate </tex>. Возьмем указатель на <tex> H.min </tex>, удалим эту вершину. Ее поддеревья (их не более, чем <tex> D(n) </tex>, где <tex> D(n) </tex> {{---}} максимальная степень вершины в куче) объединим с корневым списком. Теперь вызываем процедуру <tex> consolidate </tex>. После этой операции в списке корней остается не более чем <tex> D(n) + 1</tex> узлов, среди которых нужно найти минимальный. Итоговая асимптотика операции <tex>extraxtMin</tex>, учитывая и вспомогательную функцию <tex> consolidate </tex>, время работы которой доказывается ниже, равно: <tex> O(1)+O(D(n))+O(D(n))=O(D(n)) </tex>. По доказанной выше [[#Лемма4|лемме]] <tex>O(D(n)) = O(\log(n))</tex>. | + | Первая рассматриваемая операция, в ходе которой меняется структура кучи. Здесь используется вспомогательная процедура <tex> \mathrm {consolidate} </tex>. Возьмем указатель на <tex> H.min </tex>, удалим эту вершину. Ее поддеревья (их не более, чем <tex> D(n) </tex>, где <tex> D(n) </tex> {{---}} максимальная степень вершины в куче) объединим с корневым списком. Теперь вызываем процедуру <tex> \mathrm {consolidate} </tex>. После этой операции в списке корней остается не более чем <tex> D(n) + 1</tex> узлов, среди которых нужно найти минимальный. Итоговая асимптотика операции <tex>\mathrm {extraxtMin}</tex>, учитывая и вспомогательную функцию <tex> \mathrm {consolidate} </tex>, время работы которой доказывается ниже, равно: <tex> O(1)+O(D(n))+O(D(n))=O(D(n)) </tex>. По доказанной выше [[#Лемма4|лемме]] <tex>O(D(n)) = O(\log(n))</tex>. |
==== consolidate ==== | ==== consolidate ==== | ||
Строка 191: | Строка 191: | ||
Затем происходит [[Биномиальная_куча#merge | процесс, аналогичный слиянию биномиальных куч]]: добавляем поочередно каждый корень, смотря на его степень. Пусть она равна <tex> d </tex>. Если в соответствующей ячейке <tex>A</tex> еще нету вершины, записываем текущую вершину туда. Иначе подвешиваем одно дерево к другому, и пытаемся также добавить дерево, степень корня которого уже равна <tex> d + 1 </tex>. Продолжаем, пока не найдем свободную ячейку. | Затем происходит [[Биномиальная_куча#merge | процесс, аналогичный слиянию биномиальных куч]]: добавляем поочередно каждый корень, смотря на его степень. Пусть она равна <tex> d </tex>. Если в соответствующей ячейке <tex>A</tex> еще нету вершины, записываем текущую вершину туда. Иначе подвешиваем одно дерево к другому, и пытаемся также добавить дерево, степень корня которого уже равна <tex> d + 1 </tex>. Продолжаем, пока не найдем свободную ячейку. | ||
− | Учетная стоимость <tex> consolidate </tex> равна <tex> O(D(n)) </tex>. Докажем это: | + | Учетная стоимость <tex> \mathrm {consolidate} </tex> равна <tex> O(D(n)) </tex>. Докажем это: |
− | Изначально в корневом списке было не более <tex> D(n) + t[H] - 1 </tex> вершин, поскольку он состоит из исходного списка корней с <tex>t[H]</tex> узлами, минус извлеченный узел и плюс дочерние узлы, количество которых не превышает <tex> D(n) </tex>. В ходе операции <tex> consolidate </tex> мы сделали <tex> O(D(n) + t[H]) </tex> слияний деревьев. Потенциал перед извлечением минимума равен <tex> t[H] + 2m[H] </tex>, а после не превышает <tex> D(n) + 1 + 2m[H] </tex>, поскольку в корневом списке остается не более <tex> D(n) + 1 </tex> узлов, а количество помеченных узлов не изменяется. Таким образом, амортизированная стоимость не превосходит | + | Изначально в корневом списке было не более <tex> D(n) + t[H] - 1 </tex> вершин, поскольку он состоит из исходного списка корней с <tex>t[H]</tex> узлами, минус извлеченный узел и плюс дочерние узлы, количество которых не превышает <tex> D(n) </tex>. В ходе операции <tex> \mathrm {consolidate} </tex> мы сделали <tex> O(D(n) + t[H]) </tex> слияний деревьев. Потенциал перед извлечением минимума равен <tex> t[H] + 2m[H] </tex>, а после не превышает <tex> D(n) + 1 + 2m[H] </tex>, поскольку в корневом списке остается не более <tex> D(n) + 1 </tex> узлов, а количество помеченных узлов не изменяется. Таким образом, амортизированная стоимость не превосходит |
<tex> O(D(n) + t[H]) + (D(n) + 1 + 2m[H]) - (t[H] + 2m[H]) = O(D(n)) + O(t[H]) - t[H]</tex> | <tex> O(D(n) + t[H]) + (D(n) + 1 + 2m[H]) - (t[H] + 2m[H]) = O(D(n)) + O(t[H]) - t[H]</tex> | ||
Строка 214: | Строка 214: | ||
[[File:Каскадное вырезание.png|thumb|500px|Пример каскадного вырезания]] | [[File:Каскадное вырезание.png|thumb|500px|Пример каскадного вырезания]] | ||
− | Перед вызовом каскадного вырезания нам известно, удаляли ли ребенка у этой вершины. Если у вершины до этого не удаляли дочерний узел (<tex> x.mark = false </tex>), то мы помечаем эту вершину (<tex> x.mark = true </tex>) и прекращаем выполнение операции. В противном случае применяем операцию <tex>cut</tex> для текущей вершины и запускаем каскадное вырезание от родителя. | + | Перед вызовом каскадного вырезания нам известно, удаляли ли ребенка у этой вершины. Если у вершины до этого не удаляли дочерний узел (<tex> x.mark = false </tex>), то мы помечаем эту вершину (<tex> x.mark = true </tex>) и прекращаем выполнение операции. В противном случае применяем операцию <tex>\mathrm {cut}</tex> для текущей вершины и запускаем каскадное вырезание от родителя. |
'''Пример''' | '''Пример''' | ||
Строка 220: | Строка 220: | ||
Рисунок иллюстрирует пример каскадного вырезания: | Рисунок иллюстрирует пример каскадного вырезания: | ||
− | * Изначально, куча состояла из 3 фибоначчиевых деревьев. У вершины с ключом 24 отсутствует 1 ребенок. | + | * Изначально, куча состояла из <tex>3</tex> фибоначчиевых деревьев. У вершины с ключом <tex>24</tex> отсутствует <tex>1</tex> ребенок. |
− | * Уменьшаем ключ 26 до 5 и делаем операцию <tex>cut</tex> этого дерева. Получаем кучу с 4 деревьями и новым минимумом. Но у вершины с ключом 24 был удален второй ребенок, поэтому запускам операцию <tex>cascadingCut</tex> для этой вершины: вырезаем ее, помещаем в корневой список и помечаем ее родителя. | + | * Уменьшаем ключ <tex>26</tex> до <tex>5</tex> и делаем операцию <tex>\mathrm {cut}</tex> этого дерева. Получаем кучу с <tex>4</tex> деревьями и новым минимумом. Но у вершины с ключом <tex>24</tex> был удален второй ребенок, поэтому запускам операцию <tex>\mathrm {cascadingCut}</tex> для этой вершины: вырезаем ее, помещаем в корневой список и помечаем ее родителя. |
− | * У вершины с ключом 7 удален лишь один ребенок, поэтому операция <tex>cascadingCut</tex> от нее не запускается. В итоге, получаем кучу, состоящую из 5 фибоначчиевых деревьев. | + | * У вершины с ключом <tex>7</tex> удален лишь один ребенок, поэтому операция <tex>\mathrm {cascadingCut}</tex> от нее не запускается. В итоге, получаем кучу, состоящую из <tex>5</tex> фибоначчиевых деревьев. |
==== Время работы ==== | ==== Время работы ==== | ||
− | Докажем, что амортизированное время работы операции <tex> decreaseKey </tex> есть <tex> O(1) </tex>. Поскольку в процедуре нет циклов, ее время работы определяется лишь количеством рекурсивных вызовов каскадного вырезания. | + | Докажем, что амортизированное время работы операции <tex> \mathrm {decreaseKey} </tex> есть <tex> O(1) </tex>. Поскольку в процедуре нет циклов, ее время работы определяется лишь количеством рекурсивных вызовов каскадного вырезания. |
− | Пусть мы вызвали процедуру каскадного вырезания <tex> k </tex> раз. Так как реальное время работы операции <tex> cascadingCut </tex> без учета рекурсии составляет <tex> O(1) </tex>, то реальное время работы операции <tex> decreaseKey </tex> {{---}} <tex> O(k) </tex>. | + | Пусть мы вызвали процедуру каскадного вырезания <tex> k </tex> раз. Так как реальное время работы операции <tex> \mathrm {cascadingCut} </tex> без учета рекурсии составляет <tex> O(1) </tex>, то реальное время работы операции <tex> \mathrm {decreaseKey} </tex> {{---}} <tex> O(k) </tex>. |
− | Рассмотрим, как изменится потенциал в результате выполнения данной операции. Пусть <tex> H </tex> {{---}} фибоначчиева куча до вызова <tex> decreaseKey </tex>. Тогда после <tex> k </tex> рекурсивных вызовов операции <tex> cascadingCut </tex> вершин с пометкой <tex> x.mark = true </tex> стало как минимум на <tex> k - 2 </tex> меньше, потому что каждый вызов каскадного вырезания, за исключением последнего, уменьшает количество помеченных вершин на одну, и в результате последнего вызова одну вершину мы можем пометить. В корневом списке прибавилось <tex> k </tex> новых деревьев (<tex> k - 1 </tex> дерево за счет каскадного вырезания и еще одно из-за самого первого вызова операции <tex> cut </tex>). | + | Рассмотрим, как изменится потенциал в результате выполнения данной операции. Пусть <tex> H </tex> {{---}} фибоначчиева куча до вызова <tex> \mathrm {decreaseKey} </tex>. Тогда после <tex> k </tex> рекурсивных вызовов операции <tex> \mathrm {cascadingCut} </tex> вершин с пометкой <tex> x.mark = true </tex> стало как минимум на <tex> k - 2 </tex> меньше, потому что каждый вызов каскадного вырезания, за исключением последнего, уменьшает количество помеченных вершин на одну, и в результате последнего вызова одну вершину мы можем пометить. В корневом списке прибавилось <tex> k </tex> новых деревьев (<tex> k - 1 </tex> дерево за счет каскадного вырезания и еще одно из-за самого первого вызова операции <tex> \mathrm {cut} </tex>). |
− | В итоге, изменение потенциала составляет: <tex> \Phi_i - \Phi_{i - 1} = ((t[H] + k) + 2(m[H] + k - 2)) - (t[H] + 2m[H]) = 4 - k </tex>. Следовательно, амортизированная стоимость не превышает <tex> O(k) + 4 - k </tex>. Но поскольку мы можем соответствующим образом масштабировать единицы потенциала, то амортизированная стоимость операции <tex> decreaseKey </tex> равна <tex> O(1) </tex>. | + | В итоге, изменение потенциала составляет: <tex> \Phi_i - \Phi_{i - 1} = ((t[H] + k) + 2(m[H] + k - 2)) - (t[H] + 2m[H]) = 4 - k </tex>. Следовательно, амортизированная стоимость не превышает <tex> O(k) + 4 - k </tex>. Но поскольку мы можем соответствующим образом масштабировать единицы потенциала, то амортизированная стоимость операции <tex> \mathrm {decreaseKey} </tex> равна <tex> O(1) </tex>. |
=== delete === | === delete === | ||
Строка 238: | Строка 238: | ||
Удаление вершины реализуется через уменьшение ее ключа до <tex> -\infty </tex> и последующим извлечением минимума. Амортизированное время работы: <tex> O(1) + O(D(n)) = O(D(n)) </tex>. | Удаление вершины реализуется через уменьшение ее ключа до <tex> -\infty </tex> и последующим извлечением минимума. Амортизированное время работы: <tex> O(1) + O(D(n)) = O(D(n)) </tex>. | ||
− | Поскольку ранее мы показали, что <tex> D(n) = O(\log | + | Поскольку ранее мы показали, что <tex> D(n) = O(\log n ) </tex>, то соответствующие оценки доказаны. |
= Источники = | = Источники = |
Версия 02:26, 12 июня 2014
Содержание
Фибоначчиево дерево
Определение: |
Фибоначчиево дерево — биномиальное дерево, где у каждой вершины удалено не более одного ребенка. |
Определение: |
Порядок фибоначчиева дерева — порядок соответствующего биномиального дерева, из которого оно получено. |
Определение: |
Степень вершины — количество дочерних узлов данной вершины. |
Лемма: |
Для всех целых
, где — -ое число Фибоначчи, определяемое формулой: |
Доказательство: |
Докажем лемму по индукции: при , что действительно верно. По индукции предполагаем, что . Тогда |
Лемма: |
Фибоначчиево дерево порядка содержит не менее вершин. |
Доказательство: |
Докажем это утверждение по индукции. Пусть — минимальный размер фибоначчиева дерева порядка .При . При . Предположим по индукции, что для всех . Пусть в нашем дереве удалено поддерево порядка . ТогдаНо по предыдущей лемме . Следовательно, |
Фибоначчиева куча
Определение: |
Фибоначчиева куча — набор фибоначчиевых деревьев, корни которых объединены в неупорядоченный циклический двусвязный список. В отличие от биномиальной кучи, степени корней не обязаны быть попарно различными. |
Фибоначчиевы кучи поддерживают тот же набор операций, что и биномиальные кучи, но имеют то преимущество, что операции, в которых не требуется удаление, имеют амортизированное время работы, равное .
С теоретической точки зрения фибоначчиевы кучи особенно полезны в случае, когда количество операций бинарные кучи.
и относительно мало по сравнению с количеством других операций. Однако с практической точки зрения программная сложность и высокие значения постоянных множителей в формулах времени работы существенно снижают эффективность применения фибоначчиевых куч, делая их в большинстве случаев менее привлекательными, чем обычныеЛемма: |
, где |
Доказательство: |
Для начала докажем, что Используем для этого математическую индукцию. При , что верно. При , что также верно. По индукции предполагаем, что и . Тогда
Подставив вместо Поскольку его значение, нетрудно убедится, что , то выполняются неравенства . Таким образом, -ое число Фибоначчи равно , округленному до ближайшего целого числа. Следовательно, . |
Лемма: |
Максимальная степень произвольной вершины в фибоначчиевой куче с вершинами равна |
Доказательство: |
Пусть доказанному выше в дереве, корень которого , содержится не менее вершин, что в свою очередь по лемме равно . То есть — произвольная вершина в фибоначчиевой куче с вершинами, и пусть — степень вершины . Тогда по
Логарифмируя по основанию , получаемТаким образом, максимальная степень произвольной вершины равна . |
Структура
- Каждый узел
- — поле, в котором хранится ключ;
- — указатель на родительский узел;
- — указатель на один из дочерних узлов;
- — указатель на левый сестринский узел;
- — указатель на правый сестринский узел;
- — поле, в котором хранится количество дочерних узлов;
- — логическое значение, которое показывает, удаляли ли мы дочерние узлы данной вершины.
в куче содержит следующие указатели и поля:
- Дочерние узлы циклический двусвязный список. объединены при помощи указателей и в
- Корни всех деревьев в циклический двусвязный список корней. связаны при помощи указателей и в
- Обращение к выполняется посредством указателя на корень дерева с минимальным ключом. Этот узел называется минимальным узлом .
- Текущее количество узлов в хранится в .
Циклический двусвязный список обладает двумя преимуществами для использования в фибоначчиевых кучах. Во-первых, удаление элемента из такого списка выполняется за время . Во-вторых, если имеется два таких списка, их легко объединить в один за время .
Потенциал
Для анализа производительности операций введем потенциал для фибоначчиевой кучи
как , где — количество элементов в корневом списке кучи, а — количество вершин, у которых удален один ребенок (то есть вершин с пометкой ). Договоримся, что единицы потенциала достаточно для оплаты константного количества работы.Операции
Рассмотрим операции, которые поддерживают фибоначчиевы кучи. Амортизированное время их работы показано в таблице.
Стоит заметить, что структура фибоначчиевых куч, также как биномиальных и бинарных, не могут обеспечить эффективную реализацию поиска элемента с заданным ключом, поэтому операции и получают в качестве аргумента указатель на узел, а не значение его ключа.
makeHeap
Создается новый пустой корневой список, в
устанавливается значение . Реальное время работы — .insert
Вставка элемента в фибоначчиеву кучу также тривиальна: создается новая куча из одного элемента и сливается с текущей. Для оценки амортизированной стоимости операции рассмотрим исходную кучу
и получившуюся в результате вставки нового элемента кучу . и . Следовательно, увеличение потенциала составляет . Так как реальное время работы составляет , то амортизированная стоимость данной операции также равна .getMin
Возвращает указатель
. Реальное время работы — .merge
Слияние двух фибоначчиевых куч происходит просто: объединяем списки этих куч в один, релаксируем минимум. Реальное время работы —
. Амортизированное время работы также , поскольку, при объединении двух куч в одну, потенциалы обеих куч суммируются, итоговая сумма потенциалов не изменяется, .extractMin
Первая рассматриваемая операция, в ходе которой меняется структура кучи. Здесь используется вспомогательная процедура лемме .
. Возьмем указатель на , удалим эту вершину. Ее поддеревья (их не более, чем , где — максимальная степень вершины в куче) объединим с корневым списком. Теперь вызываем процедуру . После этой операции в списке корней остается не более чем узлов, среди которых нужно найти минимальный. Итоговая асимптотика операции , учитывая и вспомогательную функцию , время работы которой доказывается ниже, равно: . По доказанной вышеconsolidate
Данная процедура принимает кучу и преобразует ее таким образом, что в корневом списке остается не более
вершин.Для этого возьмем массив списков указателей на корни деревьев
, где — максимальная степень вершины в текущем корневом списке.Затем происходит процесс, аналогичный слиянию биномиальных куч: добавляем поочередно каждый корень, смотря на его степень. Пусть она равна . Если в соответствующей ячейке еще нету вершины, записываем текущую вершину туда. Иначе подвешиваем одно дерево к другому, и пытаемся также добавить дерево, степень корня которого уже равна . Продолжаем, пока не найдем свободную ячейку.
Учетная стоимость
равна . Докажем это:Изначально в корневом списке было не более
вершин, поскольку он состоит из исходного списка корней с узлами, минус извлеченный узел и плюс дочерние узлы, количество которых не превышает . В ходе операции мы сделали слияний деревьев. Потенциал перед извлечением минимума равен , а после не превышает , поскольку в корневом списке остается не более узлов, а количество помеченных узлов не изменяется. Таким образом, амортизированная стоимость не превосходит
Поскольку мы договорились, что можем масштабировать единицу потенциала таким образом, чтобы покрывать константное количество работы, то итоговая амортизационная оценка —
decreaseKey
Основная идея: хотим, чтобы учетная стоимость данной операции была
. Было бы хорошо, чтобы вершина не всплывала до корня, и тогда дерево не придется сильно перестраивать. Для этого при удобном случае будем вырезать поддерево полностью и перемещать его в корневой список. Итак, сам алгоритм:- Проверяем, если новое значение ключа все же не меньше значения ключа родителя, то все хорошо, и мы выходим.
- Иначе, вырезаем дерево с текущей вершиной в корневой список, и производим каскадное вырезание родителя.
cut
При вырезании вершины мы удаляем ее из списка детей своего родителя, уменьшаем степень ее родителя (
) и снимаем пометку с текущей вершины ( ).cascadingCut
Перед вызовом каскадного вырезания нам известно, удаляли ли ребенка у этой вершины. Если у вершины до этого не удаляли дочерний узел (
), то мы помечаем эту вершину ( ) и прекращаем выполнение операции. В противном случае применяем операцию для текущей вершины и запускаем каскадное вырезание от родителя.Пример
Рисунок иллюстрирует пример каскадного вырезания:
- Изначально, куча состояла из фибоначчиевых деревьев. У вершины с ключом отсутствует ребенок.
- Уменьшаем ключ до и делаем операцию этого дерева. Получаем кучу с деревьями и новым минимумом. Но у вершины с ключом был удален второй ребенок, поэтому запускам операцию для этой вершины: вырезаем ее, помещаем в корневой список и помечаем ее родителя.
- У вершины с ключом удален лишь один ребенок, поэтому операция от нее не запускается. В итоге, получаем кучу, состоящую из фибоначчиевых деревьев.
Время работы
Докажем, что амортизированное время работы операции
есть . Поскольку в процедуре нет циклов, ее время работы определяется лишь количеством рекурсивных вызовов каскадного вырезания.Пусть мы вызвали процедуру каскадного вырезания
раз. Так как реальное время работы операции без учета рекурсии составляет , то реальное время работы операции — .Рассмотрим, как изменится потенциал в результате выполнения данной операции. Пусть
— фибоначчиева куча до вызова . Тогда после рекурсивных вызовов операции вершин с пометкой стало как минимум на меньше, потому что каждый вызов каскадного вырезания, за исключением последнего, уменьшает количество помеченных вершин на одну, и в результате последнего вызова одну вершину мы можем пометить. В корневом списке прибавилось новых деревьев ( дерево за счет каскадного вырезания и еще одно из-за самого первого вызова операции ).В итоге, изменение потенциала составляет:
. Следовательно, амортизированная стоимость не превышает . Но поскольку мы можем соответствующим образом масштабировать единицы потенциала, то амортизированная стоимость операции равна .delete
Удаление вершины реализуется через уменьшение ее ключа до
и последующим извлечением минимума. Амортизированное время работы: .Поскольку ранее мы показали, что
, то соответствующие оценки доказаны.Источники
- Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн — Алгоритмы: построение и анализ. — М.: Издательский дом «Вильямс», 2005. — С. 1296. — ISBN 5-8459-0857-4
- Числа Фибоначчи — Википедия
- Фибоначчиева куча — Википедия
- Фибоначчиевы кучи — INTUIT.ru
- Визуализаторы
- Fibonacci Heaps