Изменения

Перейти к: навигация, поиск

Оператор замыкания для матроидов

20 байт добавлено, 15:14, 13 июня 2014
м
Нет описания правки
|statement = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} матроид, <tex>A \subseteq X</tex>. Тогда <tex>r(A) = r(\langle A \rangle),</tex> где <tex>r</tex> {{---}} [[Ранговая функция, полумодулярность|ранг]].
|proof =
Пусть существуют множества <tex>B, D \in I:\ B \subseteq A,\ D \subseteq \langle A \rangle,\ |B| = r(A) < r(\langle A \rangle) = |D|.</tex> Тогда по аксиоме замен<ref>[[Определение матроида | Определение матроида3-ей аксиоме]], 3-я аксиома</ref> <tex>\exists p \in D \setminus B :\ B \cup p \in I.</tex> Так как <tex>B</tex> {{---}} максимальное независимое множество из <tex> A </tex>, то <tex>p \notin A,</tex> то есть <tex> p \in \langle A \rangle \setminus A. </tex> Согласно определению замыкания возьмём максимальное по мощности множество <tex>H \subseteq A:\ H \in I,\ H\cup p \notin I.</tex> Поскольку <tex> |H| \leqslant |B| < |B \cup p|,</tex> то по аксиоме замены существует <tex>q \in (B \cup p)\setminus H :\ H \cup q \in I.</tex>
Если <tex>q \in B,</tex> то <tex>(H \cup q) \subseteq A,\ </tex> но <tex> (H \cup q) \cup p \notin I </tex> в силу <tex> H \cup p \notin I </tex> (противоречие с максимальностью множества <tex>H</tex>). Если <tex>q = p,</tex> то <tex>(H \cup p) \in I</tex> (противоречит выбору множества <tex>H</tex>).
{{Определение
|definition = Пусть <tex>M =\; \langle X,I \rangle</tex> {{---}} матроид. Тогда '''покрытие''' (англ. ''span'') множества <tex>A \subseteq X</tex> {{---}} это множество <tex> span(A) = \mathcal {f} x \in X \; |\; r(A) = r(A \cup x) \mathcal {g}</tex>
}}
{{Определение
{{Утверждение
|statement=Эти определения эквивалентны.
|proof=Понятно, что элементы из <tex> x \in A </tex> подходят под оба определения. Для остальных же <tex> x </tex> равенство <tex> \ r(A) = r(A \cup x) </tex> означает, что нету не найдётся множеств <tex> S' \in I,\ S' \subseteq A \cup x:\ S' \in I,\ |S'| > r(A). </tex> Для такого <tex> S' </tex> обязательно будет выполнено <tex> x \in S', </tex> в противном случае <tex> S' \subseteq A, </tex> и тогда откуда следует <tex> r(A) \geqslant |S'|ю . </tex> Тогда Следовательно для <tex> S = S' \setminus x </tex> верно <tex> S \subseteq A,\ S \in I. </tex> Из последнего получается, что <tex> r(A) \geqslant |S|, </tex> и учитывая <tex> r(A) < |S'|,\ |S| + 1 = |S'| </tex> имеем <tex> r(A) = |S|. </tex>
Другими словамиИначе говоря, не должно существовать множеств <tex> S \subseteq A,\ S \in I,\ |S| = r(A):\ S' = S \cup x \in I. </tex>
}}
308
правок

Навигация