Прямая сумма матроидов — различия между версиями
Shersh (обсуждение | вклад) (→Пример разложения матроида в прямую сумму) |
Maryann (обсуждение | вклад) м |
||
Строка 29: | Строка 29: | ||
==Пример разложения матроида в прямую сумму== | ==Пример разложения матроида в прямую сумму== | ||
− | |||
− | |||
− | |||
− | |||
{{Утверждение | {{Утверждение | ||
− | |statement = | + | |statement = [[Примеры матроидов#def1|Разноцветный матроид]] <tex> M = \langle X, I\rangle</tex> можно представить в виде прямой суммы [[Примеры матроидов#def2|универсальных матроидов]]. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
|proof = | |proof = | ||
Занумеруем все цвета элементов в множестве <tex>X</tex> от <tex>1</tex> до <tex>n</tex>. | Занумеруем все цвета элементов в множестве <tex>X</tex> от <tex>1</tex> до <tex>n</tex>. |
Версия 18:36, 13 июня 2014
Прямая сумма матроидов
Определение: |
Пусть | и — матроиды с непересекающимися носителями ( ) и , тогда называется прямой суммой матроидов.
Утверждение: |
Прямая сумма матроидов является матроидом. |
Докажем аксиомы независимости для .1.
2. Пусть , а .Так как (по второй аксиоме для ). Аналогично . Значит .3. Пусть , , тогда или .В первом случае из третьей аксиомы для Второй случай аналогичен первому. . Значит . |
Пример разложения матроида в прямую сумму
Утверждение: |
Разноцветный матроид можно представить в виде прямой суммы универсальных матроидов. |
Занумеруем все цвета элементов в множестве от до .Пусть Таким образом, , , где , то есть в элементы одного цвета, а независимыми являются множества, состоящие не более чем из -ого элемента. Тогда является универсальным матроидом. . |