Список с пропусками — различия между версиями
Megabyte (обсуждение | вклад) м |
Kamensky (обсуждение | вклад) м (\theta -> \Theta; log -> \log) |
||
Строка 1: | Строка 1: | ||
'''Список с пропусками''' (''skip-list'') — одна из вероятностных структур данных, на ряде параллельных отсортированных связных списков с эффективностью, сравнимой с бинарными деревьями поиска. Все операции со списком с пропусками осуществляются за <tex>O(\log{n})</tex> с большой вероятностью. | '''Список с пропусками''' (''skip-list'') — одна из вероятностных структур данных, на ряде параллельных отсортированных связных списков с эффективностью, сравнимой с бинарными деревьями поиска. Все операции со списком с пропусками осуществляются за <tex>O(\log{n})</tex> с большой вероятностью. | ||
− | Отсортированный связный список является простейшей структурой с временем поиска <tex>\ | + | Отсортированный связный список является простейшей структурой с временем поиска <tex>\Theta(n)</tex>. Одним из способов улучшить асимптотику данной структуры является добавление дополнительного уровня, обеспечивающего быстрый доступ через несколько элементов. |
==Операции над структурой== | ==Операции над структурой== | ||
Строка 37: | Строка 37: | ||
# Повторять предыдущий шаг до тех пор, пока у нас «подброс монетки» дает положительный результат | # Повторять предыдущий шаг до тех пор, пока у нас «подброс монетки» дает положительный результат | ||
− | Таким образом, если использовать честную монету, то математическое ожидание количества элементов на втором уровне равняется <tex>\frac{n}{2}</tex>, на третьем уровне <tex>\frac{n}{4}</tex> и т.д. На уровне <tex>log | + | Таким образом, если использовать честную монету, то математическое ожидание количества элементов на втором уровне равняется <tex>\frac{n}{2}</tex>, на третьем уровне <tex>\frac{n}{4}</tex> и т.д. На уровне <tex>\log{n}</tex> у нас окажется один элемент. Ну и соответственно вероятности попасть элементу на второй уровень — это <tex>\frac{1}{2}</tex>, на третий <tex>\frac{1}{4}</tex> и т.д. Вероятность попасть на уровень <tex>\log{n}</tex> равна <tex>\frac{1}{n}</tex> |
===Удаление элемента=== | ===Удаление элемента=== |
Версия 03:11, 16 июня 2014
Список с пропусками (skip-list) — одна из вероятностных структур данных, на ряде параллельных отсортированных связных списков с эффективностью, сравнимой с бинарными деревьями поиска. Все операции со списком с пропусками осуществляются за
с большой вероятностью.Отсортированный связный список является простейшей структурой с временем поиска
. Одним из способов улучшить асимптотику данной структуры является добавление дополнительного уровня, обеспечивающего быстрый доступ через несколько элементов.Содержание
Операции над структурой
Поиск элемента
Допустим, что в нашем списке с пропусками существуют два уровня:
, в котором содержатся все элементы и , в котором присутствует только часть из них. Между одинаковыми элементами этих двух списков существуют ссылки.В таком случае алгоритм поиска в этой структуре будет представлять из себя следующие операции:
- Начинаем поиск элемента в верхнем левом углу
- Передвигаться будем по списку , пока значение в следующей ячейке меньше или равно ключу
- Переместиться в нижний уровень и продолжить аналогичный метод поиска по списку
Тогда время работы алгоритма поиска будет зависеть от количества элементов на уровне
. Представим, что на этот уровень у нас случайным образом попало несколько элементов. Следовательно в худшем случае поиска мы получим следующую оценку на время работы:
Минимизируя, мы получаем, что
В итоге время за которое мы найдем элемент в списке с пропусками с двумя уровнями будет равняться:
Делая аналогичные подсчеты для списков с пропусками, в которых содержится больше уровней, получаем:
- Для трех уровней:
- Для четырех уровней:
- Для пяти уровней:
- Для уровней:
В списках с пропусками, в которых содержится
уровней будет себя вести очень похоже на сбалансированные бинарные деревья поиска. В идеальной данной структуре соотношение между соседними уровнями будет равняться двум. Поиск в списке с пропусками будет осуществляться за асимптотическое время .Вставка элемента
Для вставки элемента в список с пропусками, нам необходимо выполнить следующие шаги:
- Найти с помощью алгоритма поиска позицию, куда нам надо вставить этот элемент
- Вставить наш элемент в нижний уровень списка с пропусками
- «Подбросить монетку» и в зависимости от результата протолкнуть элемент на уровень выше
- Повторять предыдущий шаг до тех пор, пока у нас «подброс монетки» дает положительный результат
Таким образом, если использовать честную монету, то математическое ожидание количества элементов на втором уровне равняется
, на третьем уровне и т.д. На уровне у нас окажется один элемент. Ну и соответственно вероятности попасть элементу на второй уровень — это , на третий и т.д. Вероятность попасть на уровень равнаУдаление элемента
Алгоритм удаления достаточно тривиален.
- Найти удаляемый элемент
- Удалить его со всех уровней
Псевдокод
const float P = 0.5 int random_level() int lvl = (int)(log(frand())/log(1.-P)) if lvl < MAX_LEVEL return lvl return MAX_LEVEL boolean Find (int key) SkipNode x = header for i = level to 0 while x.forward[i] != NULL and x.forward[i].value < key x = x.forward[i] x = x.forward[0] return x != NULL && x.value == key void Insert(int value) SkipNode x = header SkipNode update update.assign(MAX_LEVEL + 1, 0) for i = level to 0 while x.forward[i] != NULL and x.forward[i].value < value x = x.forward[i] update[i] = x x = x.forward[0] if x == NULL or x.value != value int lvl = random_level() if lvl > level for i = level + 1 to lvl update[i] = header level = lvl x = new SkipNode(lvl, value) for i = 0 to lvl x.forward[i] = update[i].forward[i] update[i].forward[i] = x void Erase(int value) SkipNode x = header SkipNode update update.assign(MAX_LEVEL + 1, 0) for i = level to 0 while x.forward[i] != NULL and x.forward[i].value < value x = x.forward[i] update[i] = x x = x.forward[0] if x.value == value for i = 0 to level if update[i].forward[i] != x break update[i].forward[i] = x.forward[i]; delete x while level > 0 or header.forward[level] == NULL level--